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Key trends in wireless communications and sensing

Massive MIMO mmWave and THz MIMO
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Large Intelligent Surface
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Fig. 1. This figure illustrates the system model where the transmitter-receiver
communication is assisted by a large intelligent surface (LIS). The LIS is
interacting with the incident signal through an interaction matrix  .

A. System Model

Consider a communication system where a transmitter is
communicating with a receiver, and this communication is
aided by a large intelligent surface (LIS), as depicted in
Fig. 1. These transmitters/receivers can represent either base
stations or user equipment. Let the LIS be equipped with M

reconfigurable elements, and assume that both the transmitter
and receiver have a single-antenna. It is worth noting here that
such an assumption is only adopted for simplicity of exposition
and the proposed solutions and the results in this paper can
be readily extended to multi-antenna transceivers. To put that
description in formal terms, we adopt an OFDM-based system
with K subcarriers. We define hTR,k 2 C as the direct channel
between the transmitter and receiver at the k

th subcarrier;
hT,k,hR,k 2 CM⇥1 as the M ⇥ 1 uplink channels from the
transmitter and receiver to the LIS at the k

th subcarrier; and by
reciprocity, hT

T,k
,hT

R,k
as the downlink channels. The received

signal at the receiver side could be expressed as

yk = hT

R,k
 khT,ksk| {z }

LIS-assisted link

+hTR,ksk| {z }
Direct link

+nk, (1)

where the matrix  k 2 CM⇥M , that we call the LIS
interaction matrix, characterizes the interaction of the LIS
with the incident (impinging) signal from the transmitter. sk
represents the transmitted signal over the k

th subcarrier, and
satisfies the per-subcarrier power constraint E[|sk|2] = PT

K
,

with PT being the total transmit power. The receive noise is
denoted by nk ⇠ NC(0,�2

n
).

The overall objective of the LIS is then to interact with the
incident signal (via adjusting  k) in a way that optimizes a
certain performance metric such as the system achievable rate
or the network coverage. To simplify the design and analysis of
the algorithms in this paper, we will focus on the case where
the direct link does not exist. This represents the scenarios
where the direct link is either blocked or has negligible receive
power compared to that received through the LIS-assisted link.

With this assumption, the receive signal can be expressed as

yk = hT

R,k
 khT,ksk + nk, (2)

(a)

= (hR,k � hT,k)
T  

k
sk + nk, (3)

where (a) follows from the diagonal structure of the interaction
matrix  k, whose diagonal entries could be stacked in a
vector  

k
2 CM⇥1 such that  k = diag ( 

k
). This diagonal

structure results from the LIS operation where every element
m,m 2 {1, 2, . . . ,M}, reflects only its incident signal after
multiplying it with an interaction factor [ 

k
]
m

. Now, we
make two important notes on these interaction vectors. First,
while the interaction factors, [ 

k
]
m
, 8m, k, can generally have

different magnitudes (amplifying/attenuation gains), it is more
practical to assume that the LIS elements are implemented
using only phase shifters. Second, since the implementation
of the phase shifters is done in the analog domain (using RF
circuits), the same phase shift will be applied to the signals
on all subcarriers, i.e.,  

k
=  , 8k. Accounting for these

practical considerations, we assume that every interaction
factor is just a phase shifter, i.e., [ ]

m
= e

j�m . Further, we
will call the interaction vector  in this case the reflection
beamforming vector.

B. Channel Model
In this paper, we adopt a wideband geometric channel model

for the channels hT,k,hR,k between the transmitter/receiver
and the LIS [22], [23], [25]. Consider an uplink transmitter-
LIS channel, hT,k 2 CM⇥1, consisting of L clusters, each
of which (i.e., `

th cluster) contributes a single ray with
a time delay ⌧` 2 R; azimuth/elevation angles of arrival,
�` 2 [0, 2⇡), ✓` 2 [0,⇡); an uplink path loss ⇢T; a complex
coefficient ↵` 2 C. Let p (⌧) denotes the pulse shaping
function for TS-spaced signaling evaluated at ⌧ seconds. Let
the array response vector of the LIS at the angles of arrival,
�`, ✓`, be defined as a(�`, ✓`) 2 CM⇥1. The delay-d channel
vector, hT,d 2 CM⇥1, between the transmitter and the LIS
can then be formulated as

hT,d =

s
M

⇢T

LX

`=1

↵` p(dTS � ⌧`) a (✓`,�`) , (4)

Given this delay-d channel, the channel vector at subcarrier
k, hT,k, can be defined in the frequency domain as

hT,k =
D�1X

d=0

hT,d e
�j

2⇡k
K d

. (5)

where D is the channel tap length. The downlink LIS-receiver
channel hR,k can be defined similarly. The channel vectors,
{hT,k}Kk=1

and {hR,k}Kk=1
, are assumed constant within the

period of one coherence time, TC , which mainly depends on
the dynamics of the environment and the user mobility. It is
worth noting that the number of channel paths L depends
highly on the operational frequency band and the propagation
environment. For example, mmWave channels normally con-
sist of a small number of channel paths, ⇠3-5 paths, [26]–[28],
while sub-6 GHz signal propagation generally experiences

Intelligent Surfaces

Sub-6GHz

The increasing dependency on higher frequency bands (more bandwidth/range resolution)

mmWave

5G-6G
28-70 GHz

sub-THz

6G and beyond
100-300 GHz

Lead to higher data rates and better sensing capabilities

But … lead to other challenges!

The use of large antenna arrays (high spatial resolution)

Upper Mid-band

6G
7-24 GHz
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Challenges

Blockage

Mobile User

Baseb

Difficult to ensure robustness/reliabilityDifficult to support mobility

Limited observability in baseband Higher cost and power consumption

Deployment and 
maintenance cost

Beamforming-driven 
power consumption

How Can Machine Learning Help?
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Example: Learning complex mapping
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UL/DL channel prediction

Channel
tracking

Antenna

These antenna sets could be 
distributed or colocated

User   at position 

Channel MappingAntenna set   .

at frequency Antenna set   .

at frequency 

1st path of the channel

2nd path of the channel

Spatial/temporal
beam prediction Activity recognition Presence detection
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Example: Representation learning

Channel
Compression

Beam Codebook
Learning

Channel 
Charting

Sensing activity 
ClusteringBut realizing these ML gains in practice has challenges
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Challenges with complex communication/sensing ML tasks

Need large labelled datasets

Complex and non-trivial model architecture design

Significant training hyper parameter optimization



Foundation Models
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What is a foundation model?

Enabling complex tasks with limited data

Simplifies model architectures for downstream tasks

Simplifies training hyper-parameter optimization

Large unlabelled dataset Small Labelled datasets

foundation 
model

Pre-train 
foundation model

foundation 
model

Train small down-stream 
task models



Pre-trained on a massive dataset (including Wikipedia and BookCorpus) 
Can be fine-tuned for many tasks such as question answering and text classification

9

BERT in natural language processing

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 
2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186

2018 by Google

https://aclanthology.org/N19-1423/


Pre-trained on large datasets (960h LibriSpeech, 60k hours Libri-Light, 28k hours Common Voice)
Can be fine-tuned for many tasks such as ASR and speaker identification 

10

wav2vec in speech processing 2019 by Meta

Schneider, S., Baevski, A., Collobert, R., & Auli, M. (2019). wav2vec: Unsupervised Pre-training for Speech Recognition. arXiv preprint arXiv:1904.05862.



Pre-trained on ImageNet-21k (14M images) and JFT-300M (300M images)
Can be fine-tuned for many tasks such as image classification and object detection

11

ViT in computer vision

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2021). An image is worth 16x16 words: Transformers for image 
recognition at scale. arXiv preprint arXiv:2010.11929.

2021 by Google



LWMs
Large Wireless Models
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LWM: World’s first foundation model for wireless

S. Alikhani, G. Charan, and A. Alkhateeb, Large Wireless Model (LWM): A Foundation Model for Wireless Channels. arXiv:2411.08872, 2024.

Spectrogram

LWM-Spectro
Can be 
fine-tuned

(Releasing soon!)

LWM
Can be 
fine-tuned

LWM 1.0 - LWM 1.1

communication tasks

LOS/NLOS classification
Beam prediction

Channel estimation
Channel interpolation

Localization

Presence detection
Activity recognition
Gesture recognition
Biomarker sensing

sensing tasks

communication tasks

Modulation classification
Signal detection

sensing tasks

Gesture/activity 
recognition

without cannel 
estimation
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LWM model architecture 

The model architecture is similar to ViT while the pre-training strategy is similar to BERT
Masked channel modeling (for real/imag. patches) is used for self-supervised pre-training
The LWM encoder is based on the standard transformer structure 

S. Alikhani, G. Charan, and A. Alkhateeb, Large Wireless Model (LWM): A Foundation Model for Wireless Channels. arXiv:2411.08872, 2024.



The DeepMIMO dataset provides diverse wireless scenarios
Over 1 million channel samples are generated from 15 DeepMIMO scenarios
Channels cover different number of antennas and subcarriers at basestations

Channels of varying sizes are used for pre-training, making the model more flexible

Large diverse datasets help foundation models to have
Wide distribution coverage: Reduces domain shift across wireless environments

Rich embedding space: Learns generalizable, high-rank channel features

Improved sample efficiency: Boosts downstream performance with few labels 
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LWM pre-training — Dataset

Find a script that generates the full data on lwm-wireless.net

http://lwm-wireless.net


Given the large hannel dataset, the LWM model is pre-trained end-to-end
Self-supervised training with masked channels via contextual channel reconstruction
Objective is to minimize MSE loss

Transformer attention/multi-head mechanism implicitly learns spatial/spectral/temporal dependencies
16

LWM pre-training — Strategy

S. Alikhani, G. Charan, and A. Alkhateeb, Large Wireless Model (LWM): A Foundation Model for Wireless Channels. arXiv:2411.08872, 2024.
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How to use LWM? 

LOS/NLOS 
Classification Localization Channel  

Denoting
Channel  

Interpolation

LWM Embeddings

The LWM universal embeddings could be used instead of raw-channels 
LWM embeddings can support many tasks in communications and sensing  
The model can be refined for each task (submit LWM variants for ranking & listing)  

S. Alikhani, G. Charan, and A. Alkhateeb, Large Wireless Model (LWM): A Foundation Model for Wireless Channels. arXiv:2411.08872, 2024.

www.LWM-wireless.net



Example LWM Applications 
(Initial Results)
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Example LWM applications 

Fig. from Ferrand et al., 2021 
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Evaluation process

For LWM: 
Flattened embeddings with simple ML model generalize well
No specialized hyper-parameter tuning

For the comparison 
Adopt state of the art models (complex models and optimized training)
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Considered state-of-the-art models
LOS/NLOS Classification 

CNN
Sub-6 GHz to mmWave Beam Prediction

Complex FCN

Channel Interpolation 
Complex FCN

Channel estimation/denoising 
Complex CNN and data processing

Localization 
Complex FCN & data processing

X. Wang et al., UWB NLOS/LOS Classification, IEEE GLOBECOM, 2019.
Alrabeiah & Alkhateeb, Deep Learning for TDD/FDD Channel 
Mapping, Asilomar, 2019.
X. Wang, L. Gao, S. Mao and S. Pandey, "CSI-Based Fingerprinting for 
Indoor Localization: A Deep Learning Approach," in IEEE Transactions 
on Vehicular Technology, 2017.  
J. Guo et al., Convolutional Neural Network based Multiple-Rate 
Compressive Sensing for Massive MIMO CSI Feedback: Design, 
Simulation, and Analysis, arXiv:1906.06007, 2019.

Typically relies on complex task and data specific designs with increased risk of overfitting with limited data
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Initial LWM results

LWMs lead to  
• Better gains  
• Simple downstream model design 
• Simple training  

Huge room for optimization!

S. Alikhani, G. Charan, and A. Alkhateeb, Large Wireless Model (LWM): A Foundation Model for Wireless Channels. arXiv:2411.08872, 2024.



LWM ITU ML Competition 
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ITU ML Challenge 2025

LWM Multi-Task Optimization

Wireless Intelligence Lab AI for Good
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Problem Statement
Participants will be provided with 

A baseline pre-trained LWM 1.1 model 

Baseline models for five downstream tasks 

Limited training/test sets for the five tasks 
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Problem Statement

Participants can refine the LWM or downstream task models/training



Participants get  
early access  

to  
DeepMIMO v4



DeepMIMO v4  
with 200+ datasets

Facilitating  
community contributions
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Problem Statement

Participants will submit refined models and prediction results 

Evaluation will be based on the composite score of the five tasks 

Registration is  
now open!

Final models will  
be ranked on the 

LWM website!



Complex communication/sensing ML tasks are challenging

Require large datasets (site-specific)

Non-trivial model architectures and training optimization 

LWMs: World’s first foundation model for wireless

Enable complex tasks with small datasets and simple downstream models

Support many communication and sensing tasks

Stay tuned for more LWM releases coming soon!

Conclusion

www.LWM-wireless.net www.WI-Lab.net www.DeepMIMO.net

Registration is now open for the
ITU ML Challenge 2025 on LWMs 



Questions?

Thank You!

www.DeepVerse6G.netwww.WI-Lab.netwww.DeepSense6G.net


