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Key trends in wireless communications and sensing

B> The use of large antenna arrays (high spatial resolution)

) (c il Cllauel B

IHI \.~
~ Sey
.
- So
% ~.
§~ §~
o S,
So I3
Sevh N, hr
A -~
§~ -~
. R,
N .
~~~ .
.
~~‘ﬁ
~

Massive MIMO mmWave and THz MIMO Cell-free massive MIMO Intelligent Surfaces

o | | [ 11 ] [Ew

s HINEEEEN -

a ¢}
@

o [l

Q =}

: HHNEEEN :

g =

=

HEEEEEN

<}

= HHNEEEN -

g %

- HHHEEEN

o

o

HEEEEEN ¢

<
S

\M

ﬁ hTr & @
Receiver

P> The increasing dependency on higher frequency bands (more bandwidth/range resolution)

Sub-6GHz Upper Mid-band mmWWave .
7-24 GHz 28-70 GHz 100-300 GHz
6G 5G-6G 6G and beyond

Lead to higher data rates and better sensing capabilities

But ... lead to other challenges! 2




Challenges

5

Blockage

it

, — o=
® - . o - o .
------ 7 T MOblle User

"_

Baseband . /)
T

Deployment and Beamforming-driven
maintenance cost power consumption

Limited observability in baseband Higher cost and power consumption 3



Example: Learning complex mapping
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Example: Representation learning
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But realizing these ML gains in practice has challenges




Challenges with complex communication/sensing ML tasks

Need large labelled datasets

Complex and non-trivial model architecture design

Significant training hyper parameter optimization




Foundation Models



What is a foundation model?

foundation
model

foundation
model

Pre-train
foundation model Train small down-stream
task models
Large unlabelled dataset Small Labelled datasets

Enabling complex tasks with limited data

Simplifies model architectures for downstream tasks

Simplifies training hyper-parameter optimization




BERT in natural language processing

Start/End Spm

Mask LM

EE. GBEE . & e . B

Masked Sentence A Masked Sentence B Question Paragraph
a*
Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning

P> Pre-trained on a massive dataset (including Wikipedia and BookCorpus)
P> Can be fine-tuned for many tasks such as question answering and text classification

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 9
2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171-4186


https://aclanthology.org/N19-1423/

wav2vec in speech processing

Contrastive loss
[,t\

Context_ C . . .
representations T T T
| Transformer
Masked
A A A A A
Quantized
representations Q 6 ‘ ‘

Latent speech Z#
representations

raw waveform X

P> Pre-trained on large datasets (960h LibriSpeech, 60k hours Libri-Light, 28k hours Common Voice)
P> Can be fine-tuned for many tasks such as ASR and speaker identification

10
Schneider, S., Baevski, A., Collobert, R., & Auli, M. (2019). wav2vec: Unsupervised Pre-training for Speech Recognition. arXiv preprint arXiv:1904.05862.



2021 by Google

Transformer Encoder

ViT in computer vision

Vision Transformer (ViT)
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P> Pre-trained on ImageNet-2 1k (14M images) and |FT-300M (300M images)
P> Can be fine-tuned for many tasks such as image classification and object detection

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2021). An image is worth 16x16 words: Transformers for image |
recognition at scale. arX1v preprint arXiv:2010.11929.



LWMs
Large Wireless Models



LWM: World’s first foundation model for wireless

communication tasks sensing tasks

Wireless Channel

T T T LOS/NLOS classification Presence detection

EEEEEEEE Can be Beam prediction Activity recognition
T q d mat "
NN Ine-tune Channel estimation Gesture recognition
EEEE Channel interpolation Biomarker sensing
LWM 1.0 - LWM 1.1 Localization
communication tasks sensing tasks
Spectrogram
Can be Gesture/activity

Modulation classification

recognition
fine-tuned Signal detection 5

without cannel

(Releasing soon!) estimation

S. Alikhani, G. Charan, and A. Alkhateeb, Large Wireless Model (LWM): A Foundation Model for Wireless Channels. arXiv:2411.08872, 2024.
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LWM model architecture
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P> The model architecture is similar to ViT while the pre-training strategy is similar to BERT

P> Masked channel modeling (for real/imag. patches) is used for self-supervised pre-training

B> The LWM encoder is based on the standard transformer structure

14

S. Alikhani, G. Charan, and A. Alkhateeb, Large Wireless Model (LWM): A Foundation Model for Wireless Channels. arXiv:2411.08872, 2024.
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LWM pre-training — Dataset
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P> The DeepMIMO dataset provides diverse wireless scenarios

*k Over | million channel samples are generated from 15 DeepMIMO scenarios
sk Channels cover different number of antennas and subcarriers at basestations

*k Channels of varying sizes are used for pre-training, making the model more flexible

P> Large diverse datasets help foundation models to have
*k Wide distribution coverage: Reduces domain shift across wireless environments
*% Rich embedding space: Learns generalizable, high-rank channel features

*k Improved sample efficiency: Boosts downstream performance with few labels

Find a script that generates the full data on lwm-wireless.net



http://lwm-wireless.net

LWM pre-training — Strategy
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B> Given the large hannel dataset, the LWM model is pre-trained end-to-end
Kk Self-supervised training with masked channels via contextual channel reconstruction

*k Objective is to minimize MSE loss

B> Transformer attention/multi-head mechanism implicitly learns spatial/spectral/temporal dependencies

16

S. Alikhani, G. Charan, and A. Alkhateeb, Large Wireless Model (LWM): A Foundation Model for Wireless Channels. arXiv:2411.08872, 2024.



How to use LWM?

LOS/NLOS Channel Channel

o Localization : :
Classification Denoting Interpolation

LIWM Embeddings
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> The LWM universal embeddings could be used instead of raw-channels
B> LWM embeddings can support many tasks in communications and sensing

> The model can be refined for each task (submit LVWM variants for ranking & listing) .
S. Alikhani, G. Charan, and A. Alkhateeb, Large Wireless Model (LWM): A Foundation Model for Wireless Channels. arXiv:2411.08872, 2024.



Example LWM Applications
(Initial Results)




Example LVWM applications
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Evaluation process
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iv.Test on unseen data

B> For LWM:

% Flattened embeddings with simple ML model generalize well
% No specialized hyper-parameter tuning
P> For the comparison

*k Adopt state of the art models (complex models and optimized training)



Considered state-of-the-art models
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Typically relies on complex task and data specific designs with increased risk of overfitting with limited data




Initial LVWM results

Beam Prediction

LWMs lead to
* Better gains P T e S
* Simple downstream model design ) \

* Simple training

OS/N LO.'S\ Classification

Huge room for optimization!

S. Alikhani, G. Charan, and A. Alkhateeb, Large Wireless Model (LWM): A Foundation Model for Wireless Channels. arXiv:2411.08872, 2024.



LWM ITU ML Competition



ITU ML Challenge 2025
LWM Muiti-Task Optimization .

Channel Dataset

Highly Refined Dataset Size
Representation!

Al for Good




Problem Statement / [ Provided baseline block ] \

B> Participants will be provided with
P> A baseline pre-trained LWM |.| model

B> Baseline models for five downstream tasks

P> Limited training/test sets for the five tasks
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Problem Statement
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Participants can refine the LWM or downstream task models/training
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DeepMIMO O Home GetStarted Documentation Visualizer Scenarios Publications Legacy v Help v About Vv Contribute

DeepMIMO v4 Version 4 Scenarios Facilitating
with 200+ datasets community contributions

asu_campus_J3p5 city_O_newyork_3p5

A scenario for asu_campus_3p5 A scenario for city_O_newyork_3p5

-----------

city_1_losangeles_3p5 city_2_chicago_3p5

A scenario for city_1_losangeles_3p5 A scenario for city_2_chicago_3p5

city_3_houston_3p5 city_4_phoenix_3p5

A scenario for city_3_houston_3p5 A scenario for city_4_phoenix_3p5




Problem Statement
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1.000
be ranked on the
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0.000 a - ' -
LoS/NLoS Beam Channel Channel User Composite
classification prediction interpolation estimation localization score

Participants will submit refined models and prediction results

Evaluation will be based on the composite score of the five tasks




Conclusion

P> Complex communication/sensing ML tasks are challenging

Require large datasets (site-specific)

Non-trivial model architectures and training optimization

B> LWMs:World’s first foundation model for wireless

Enable complex tasks with small datasets and simple downstream models
Support many communication and sensing tasks

Stay tuned for more LVWM releases coming soon!

Registration is now open for the

ITU ML Challenge 2025 on LWMs

www.LWM-wireless.net www.WIl-Lab.net www.DeepMIMO.net




Thank You!

Questions?

www.DeepSensebG.net www.WIl-Lab.net www.DeepVerseb6G.net



