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Deep Transcend Ltd., founded in Shanghai in 2023, is a start-up with 6 full-time employees.

Advanced Communication and Computing Electronics Lab (                  ) was founded in 2019 at Shanghai 
University in Shanghai, China.
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Mobile Network Evolution
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1G (1980s) —— Analog communication (Ericsson & Motorola)

2G (1990s) —— Digital communication (Nokia)

3G (2000s) —— CDMA

4G (2010s) —— OFDM and MIMO → 5G (2020s) → 6G (2030s) 



5G & 6G
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➢ From Performance Improvement to Scenario Driven

➢ From IoT (Internet of Everything) to IIoT (Intelligent Internet of Things)

Enhancements of Communication Performance Increase in application scenarios
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From Users: 5G is not good enough From Operators: Not economically sustainable

Without killer application, not app-driven

Vodafone Group’s Network Strategy Director Santiago

Tenorio said in an interview: “Nobody needs 6G. The industry

should make 6G a ‘No-G’.” BT Group’s Chief Architect Neil

McRae also said in 2021: “I hope that 5G will be the best and

the last generation of mobile communication technology in

history. I hope we don’t need 6G.”

Sustainable 6G Evolution Dilemma



6G with Native AI
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Main Features:

• Native AI：AI will be both a service and a native feature in the 6G communication system, and 6G will 

be an E2E system that supports AI-based services and applications. 

• Networked sensing (ISAC)

• Extreme Connectivity

• Integrated NTN：Ubiquitous Connectivity

• Native Trustworthiness

• Sustainability

The potential technologies to realize energy 

efficiency span architectures, materials, 

hardware components, algorithms, software, 

and protocols. 

Figure: AI for Network & Network for AI
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“We will install AITRAS in nearly 200,000 base stations across the 

country and fully rebuild the communication network using AI-

RAN technology.” (Nvidia and SoftBank)

AI-RAN is an architecture that integrates AI and RAN.

It uses GPUs for baseband signal processing and AI

computing, thereby disrupting the traditional

architecture as well as the O-RAN architecture.

AI-RAN Alliance was established on Feb. 2024

AI-RAN Alliance



Traditional RAN Architecture
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Traditional Baseband：(DSP and ASIC modem)

➢ The core processing unit of the baseband is solidified by 

hardware.

➢ Closed Ecosystem: Neither the software nor hardware 

implementations of the baseband are open.
Qualcomm’s baseband

Traditional RAN:

➢ Protocol stack that runs on proprietary hardware.

➢ Radio Unit and BBU are connected via proprietary interfaces.

➢ Single vendor provides both Radio Unit and BBU.

Traditional RAN structure
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Sustainable mobile network evolution is a major challenge！

Open-source, Decoupled Software and Hardware on Integrated AI and Wireless Chipsets

➢ Native-AI mobile network
➢ Hardware choice is limited
➢ lack open-source platforms 

similar with AI community 

➢ lack open-source reference 
designs and collaborative testbeds

➢ Long time-to-market for new 
technology 

Industry AI-Driven Academia

Hinder hardware efficiency 
and cross-domain 

innovation

Hard to integrate cutting-edge 
research and industry feedback

➢ Economically unsustainable 6G
➢ Operators is vendor-locked 
➢ limited flexibility / scalability in 

RAN 

High upgrade and 
maintenance costs

Background Summary



Outline

◼ Background & Motivation

◼ Related Works 

◼ Echo: An Open-Source 5G/4G/GNSS/LoRa/AI Library

◼ Venus: A Multi-Core Dataflow-Driven RISC-V Domain Specific 

Architecture and Implementation on 40nm CMOS

◼ Zoozve: A Strip-Mining-Free RISC-V Vector Extension Compiler

◼ Conclusion

12



Open RAN / V-RAN
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Evolution of the traditional black-box base station architecture toward a virtualized gNB with a functional split 

Decoupling of hardware and software

• The non-real-time application software of the access 

network is separated from dedicated hardware and 

runs on general-purpose x86 servers.

Unified interfaces 

• Standardized set of communication protocols and 

data models that allow for seamless interoperability 

between the various components of a RAN.

CU: RRC, SDAP, and PDCP DU: RLC, MAC, frequency-domain functionalities RU: time-domain functionalities

Features:



OAI
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OpenAirInterface (OAI) 

5G software alliance for democratizing wireless innovation

• Main Projects: 5G RAN Project & 5G Core Network Project

• Main application: Simulation testing of base stations and 
core networks, and deployment of temporary base stations

• Deployment platform: CPU + FPGA/GPU

• Target Stakeholders: Researcher and Special application scenarios (Disaster relief)



srsRAN
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srsRAN Project

Open-source 4G and 5G software radio suites developed by Software Radio Systems

• Implementation Language: C++

• Deployment platform: x86, ARM and AMD processors with SIMD

• Target Stakeholders: Researcher and 5G private network deployment 

(Factory automation, smart industrial parks)

• Main Features:

Compare to OAI:

srsRAN: more lightweight and

easier to deploy, suitable for quickly

verify communication solutions or

build low-cost testing environments.

OAI: more focused on in-
depth protocol research and the
simulation of complex scenarios.







Proprietary Solutions
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Amarisoft Technology
Deliver distinctive eNB, gNB, and UE simulator software to the wireless industry, compatible with readily 
available off-the-shelf hardware, including the physical layer. 

Amarisoft’s Projects overview

For Labs: Offer cost-effective and high-quality test 

equipment for both device and base station testing. 

For Industry: Provide the network deployment 

market with comprehensive products and services 

that address the requirements of both public and 

private networks.

Problems: The ecosystem is closed, and AI is not 
supported.

Target Stakeholders: Researcher and Industry 



AI-RAN
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Feature: One Accelerated Infrastructure (GPU) for AI and RAN

Benefits:

• Unlock New AI Applications and Services

• Maximize Resource Utilization

• Boost Radio Performance

• Prepare for 6G

• One Extensible Architecture

Three Aerial-based platforms:

• Aerial CUDA Accelerated RAN

• Sionna Neural Radio Framework

• NVIDIA Aerial Omniverse Digital Twin

Target Stakeholders: Researchers and operators

Compared to the previous projects:
✓ Support AI-native mobile network.
✓ Lower power consumption than 

RAN implemented by x86.



Comparisons and Preview of Our Solution
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OAI srsRAN Amarisoft AI-RAN Modem+NPU

For 
Researchers

UE Simulation

RAN Simulation

For 
Commercial

Private Network

RAN (For operators)

UE

AI Performance High High

Baseband Performance Low Low Low Medium High

Energy Efficiency Low Low Low Medium High

Cost x86 (High) x86 (High) x86 (High) GPU (High) ASIC (Low)

Ecosystem Open Open Closed Open Closed

OAI & srsRAN:  run on x86/arm CPUs, poor performance, mainly used for research simulation, do not support AI-native.

AI-RAN: run on GPU, higher energy consumption of communication than ASIC, can't be used on UE side.

Modem+NPU: Inflexible for academic research and high latency caused by inter-chip communication.

Our Solution

Almost High

Almost High

High

Venus (Low)

Open



Our Solution
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Toolchain 

Multi-Core

Uarch①

②

③

◼ To build a open-source, fully software-defined and evolvable, AI-integrated 

mobile network baseband architecture

⓪ Silicon

Applications

Venus

Zoozve

Echo
An Open-Source library for 5G, 4G, 
GNSS, LoRa and etc.

AI and wireless baseband processing 
(WBP) integrated toolchain

Multi-Core Dataflow-Driven RISC-V 
Domain Specific Architecture for 
Integrated AI and WBP
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Integrated AI and Wireless with Software & Hardware Joint Opt.
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Venus & Echo

A software-hardware fully decoupled solution designed for AI-Native wireless baseband

Venus: The first domain-specific RISC-V instruction 

set architecture integrating AI and communication.

➢ AI-Communication converges instruction sets

➢ Fully decoupled software and hardware design

➢ Programmable DSA accelerator

Echo: The open-source wireless Testbench 

built upon the Venus instruction set.

➢ Full-stack emulation environment

➢ Communication performance evaluation

➢ High-performance wireless operator library

Flexibility Wireless Performance Wireless EE AI Performance AI EE Cost

Venus High High High Almost high High Low

AI-RAN High High Low High High High

DSP+NPU Low Medium High Medium High Low



What is Echo ?
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◼ The open-source  ComAI development platform build on AURA architecture and Venus RISC-V SoC.

[1] Xu, Siyi, et al. "Zoozve: A Strip-Mining-Free RISC-V Vector Extension with Arbitrary Register Grouping Compilation Support (WIP)." Proceedings of the 26th ACM SIGPLAN/SIGBED 

International Conference on Languages, Compilers, and Tools for Embedded Systems. 2025.

[2] Jiang, Limin, et al. "A hierarchical dataflow-driven heterogeneous architecture for wireless baseband processing." Proceedings of the 30th Asia and South Pacific Design Automation 

Conference. 2025.

Project Info：

• GitHub:         https://github.com/ACELab-SHU/ACE-Echo

• Website:       https://acelab-shu.github.io/ACE-Echo

Echo includes:

Application Prototypes: 5G/LTE, AI-Based Channel Estimation, GNSS,LORA

Communication & AI Operators: FFT, decoder, Conv2D/3D, ​​GELU/SiLU

Software Toolchain: Compiler, debugger, ISA support

Developer SDK: Libraries, APIs, documentation​

Design Evaluation Tool: Test application performance at different

hardware scales

Functional & Performance Simulator: Simulates Venus workloads and

output Latency & throughput estimation
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What will Echo do & Who is Echo for ?

 Academia & Researchers

→ Open-Source Platform for Communication-AI Research

Echo provides a low-cost, low-power environment to prototype and validate 
communication algorithms with real-world performance. Ideal for academic 
research and rapid innovation.

 Industry

→ Decoupled Software-Hardware Baseband Chip Solution

Accelerate your baseband chip development with a modular, software-first
approach.

• R&D Cycle Reduced: From 12–18 months to just 3–6 months.

 Standards Organizations

→ Fast-Track 6G Technology Validation

Streamline the path to 6G standardization with efficient tools and full-stack 
communication-AI libraries.

• Cut traditional prototype cycles (3–5 years) down to months.

What Echo can do ?

➢ Unified Com & AI Development

Simplifies joint AI and communication system design through 
one unified programming model.

➢ Dual-Precision Execution

One codebase, dual targets — generate both floating-point and 
fixed-point versions for fast deployment.

➢ Software-Hardware co-design & cycle-accurate simulation 

➢ Higher performance and better energy efficiency than GPPs

Table.1  Comparison with earlier works for performance and 
software-friendliness



Current Features of Echo v0.1

Echo v0.1 :  (Current Features)

✓ Complete Application Development Support

Includes compiler, libraries, debugging, and simulation tools.

✓ Hardware-Consistent Fixed-Point Simulation and 

register usage analysis

✓ 3GPP-Compliant 5G/LTE PHY Library​​

Such as channel coding (Polar/Turbo/LDPC), OFDM, channel 

estimation, modulation…

✓ 5G Cell Search Demo Implemented

End-to-end demo showcasing Venus-based baseband 

algorithm implementation.

✓ A few AI operators Fig.1  The 5G Cell Search Demo, developed using the Echo platform, has been successfully 
deployed and tested on the Venus architecture.

Try Echo Today !!!
• We invite you to download and experience the Echo platform.
• Our simulator can perform full cell search and decode MIB/SIB now.
• The same application can also be deployed directly on the Venus chip for real-time execution.

Home Page:
https://acelab-shu.github.io/ACE-Echo



25

Future Roadmap of Echo

July 8, 
2025

Echo v0.1
First official release

Echo v1.0 beta

January 1, 
2026

April 13, 
2025

October 1, 
2025

May 1, 
2026

Echo v0.1 beta
Project development and

testing

Echo v1.0
Full-featured stable

release

Echo v0.5
Floating-point simulation 
support, LTE Cell Search 

Demo, LORA…

Echo Project Release Timeline:

The unified development paradigm & 
cycle-accurate simulator for intelligent 

baseband systems.

 Echo v1.0 beta
Scheduled for release before January 1, 2026
A major milestone in our open-source journey ——
officially introducing a unified programming paradigm 
for Communication-AI fusion.

With Echo, we aim to lower the barrier to intelligent baseband innovation — enabling a broader community 
to explore, simulate, and accelerate next-generation wireless systems. 
We warmly welcome more developers, researchers, and collaborators to join us on this journey.

Main Features:
➢ Unified programming model for Com & AI
➢ Cycle-Accurate Simulator for software-hardware co-design
➢ AI Operator Library
➢ Richer Operator Library of signal processing
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Echo provides cycle-accurate execution time estimation for programs when 

deployed on Venus.

Programming model description, including multi-level dataflow scheduling

From programming languages to 
hardware design, our full-stack 
vertical integration enables us 
have a clear understanding of the 
mapping between each Venus 
language and hardware, so we 
can directly give the actual 
execution time of the program 
written by the developer on the 
Venus chip of the selected size 
and configuration.

With Echo —— Rapid Prototyping AI-native Wireless Networks



With Venus & Echo —— Rapid Product Commercialization
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Floating-point 

simulation validation

Fixed-point simulation 

validation

RTL Design

FPGA prototyping

Tape-out

Chip function verification

… a lot of work

… a lot of work

… a lot of work

… Good Luck

Traditional baseband development process With the Help of Venus & Echo

Develop your program 

by the Echo

Program the software 

into the Venus chip

Echo provides comprehensive simulation reports encompassing 
both floating-point and fixed-point results. Developers can 
directly inspect the fixed-point implementation outcomes, 
while leveraging the floating-point reference data to isolate 
error sources - determining whether discrepancies stem from 
algorithmic flaws or excessive quantization errors.

Concurrently, Echo generates hardware deployment runtime 
projections, enabling engineers to verify real-time performance 
compliance with system requirements.



With Venus & Echo —— Low-cost & Reliable Communication Testing 
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Many new scenarios !!!    Impossible to create simulation environments that perfectly replicate real-world.

Venus GPU ASIC x86/arm

Power Low High Low High

Cost Low Medium High Medium

Time 2-3 days 2-3 days 1-2 years 2-3 days

For instance, when validating UAV (Unmanned Aerial 

Vehicle) communication algorithms, power-hungry GPU 

and x86 architectures prove inadequate for sustained 

aerial operations due to excessive energy consumption. 

Meanwhile, ASIC solutions require a 12-month tape-out 

cycle with costs exceeding $1million for advanced node 

implementations.

Just software simulation cannot guarantee 
the reliability of communication algorithms 
in actual deployments.

Comparison of different platforms in real scenario testing



Echo: Programming examples (1/3)
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Three steps Complete the application development of Venus

Step1: Write functions (tasks) based on the Venus language

✓ Similar to C

✓ Added a new variable type

——Vectors

✓ Added vector calculation 

instructions for Venus, such as

vshuffle, vmul, vsadd ……

QPSK Demodulation task based on the Venus language



Echo: Programming examples (2/3)

30

Step2: Write a .bas file to connect the functions (tasks) you developed into a DAG.

Symbol_1

Symbol_2

Symbol_3
OFDM
Demod

OFDM
Demod

OFDM
Demod

SSS
Search

PBCH
DMRSIdx

PBCH
Idx

iBar
SSB
Search

PBCH
DMRS

PBCH
Channel
Esitmate

PBCH
Equalize

PBCH
Demod

PBCH
Descramble

PBCH
Bit
Process

MIB
Decode

hCORESET0
&PDCCH0

Directed Acyclic Graph (DAG) of NR PBCH Screenshot of a portion of NR PBCH.bas



Echo: Programming examples (3/3)
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Step3: Write L1 scheduler files to delivery Dag-level tasks, to control hardware interrupts and 
data transmission with the DFE (Digital Front-End)

Specify the Dag to be calculated, its trigger 
conditions, and data inputs

Control and configure the digital RF front-end

Other features: 
1. Handling peripheral interrupts
2. Handling DMA interrupts
3. Analyze DAG return values
4. Controlling DMA data transfers
5. ……



Echo -- Basic Framework is Ready
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 L1 Scheduler：Interact with hardware peripherals, interrupt handling, and Dag-level task delivery

 L2 Scheduler：Dag analyze and task delivery

 Venus Compiler: The whole process of compilation - preprocessing, compilation, assembly, linking

Figure - Compilation workflow for Venus Compiler (Zoozve) in LLVM

Emulator and open-source repositories are coming soon……



LTE/NR & AI High-performance Operator Library
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 Almost all modules in the LTE/NR physical layer are already supported.

 Some of the basic operators of AI.

 Well-optimized modules such as FFT, LDPC, Polar, channel estimation, etc.

More high-performance modules will be available soon ...

Figure – Performance demonstration of the main modules

FFT, Channel Estimation, Polar, 
LDPC, Turbo…

Matrix Multiplication,2D-
Convolution, Max-pooling… 

Echo Toolbox



NR/LTE Cell Search Demo
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We used the Venus instruction set to complete the NR/LTE cell search process on the Echo, and through FPGA 

prototyping, we realized the communication with commercial base stations.

Figure -- Evaluation platform for proof of our solution. 
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Overview of Venus
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◼ A cache-free manycore architecture is proposed to increase energy 

and area efficiency without compromising performance due to the 

predictable data processing nature of WBP.

◼We develop a pack-and-ship data dispatch system to enable the 

tiles to operate in a bundled access and execution style, which can 

drastically reduce the cost of data movement.

◼ A hierarchical dataflow task scheduling scheme is designed and 

two strategies, namely multi-threading and lazy-deletion, are 

proposed to fully utilize the hardware resources.

Modular/Decoupled

Cyclical/Predictable
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X86 Server/GPGPU:
✓ Massive computing 

capability

✓High energy consumption

ASIC:
✓Best PPA

✓Long time to market

DSP: 

✓VLIW boosts ILP

✓High control overhead 

limits scalability

WBP: How?

Wireless Baseband Processing (WBP) Architecture
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Related Works

Work
Core 

Heterogeneity
Scalability DLP TLP

HW/SW 

Co-design

Sora

TeraPool -

SPECTRUM

MACRON -

MAGALI -

DXT501

Ours

◼ Various works have been presented in academia seeking a way 

towards manycore parallel computing for WBP.

GPPs

Sys-level

Analyses

NoCs

ASIP
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System Design: Architecture

◼ Tile: RV32IM core with 

customized vector extension & 

local scratchpad memory.

◼ L2 DMA: Orchestrating Tiles via a 

scalar scheduler.

◼ CS-SPM: Swap space for cluster.

◼Main scheduler: Managing high-

level scheduling; Directing the 

main DMA engine to transfer data 

between main memory and the 

clusters.



System Design: Pack-n-Ship
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◼ NUMA Approach:
Each tile and cluster has its own SPM, 

accessed by outside DMA.

Eliminating fragment memory access.

◼ Before Execution
Alter T-SPM direction by atomic instructions.

DMA moves data from CS-SPM to T-SPM.

Change back T-SPM direction to the RV core.

De-assert core reset.

◼ After Execution
Store results in T-SPM.

Notify attributes of return value to CSRs.

Alter T-SPM direction & Issue an interrupt.

DMA retrieve data back to CS-SPM.



System Design: Heterogeneous Configuration
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◼ Configurable dimensions for WBP

① # of clusters & tiles: Enhancing thread- & task-level parallelism of processing 

Tx & Rx in consecutive time slots – dependent on protocol throughput.

② SPM footprint: Dependent on computation type: FFT, Polar decoding; Multi-

threading capability.

③ # of lanes and VRFs: Enhancing DLP capabilities.
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Execution Model: Dataflow Model
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◼WBP interpreted as DAGs

A subsequent module is activated only when all preceding tasks are complete.

WBP follows a consistent flow over time, enhancing data locality as the DAG 

information is unlikely to be reconfigured on the hardware.

Less scheduler-bounded

              

             

          

          

               

    

            

            

            

               

              
                              

Task: A module 

running on a tile.

Thread: Several related 
tasks, representing a 
complete transmit or 
receive processing flow.



Execution Model: Dataflow Model
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◼ Attributes guide the scheduler in 

selecting the most suitable tile for 

deployment.

◼ Runtime adjustment of DAGs

Tasks can be dismissed on-the-fly once 

the worst-case DAG is determined.

If the blind detection task detects fewer 

users, the computational burden can be 

reduced.

 

      

       

        

    

      

      

          

 

 

 

 

 

 

            

            

                                 
                     
                                 

                         
                                 

              

𝐼𝐷𝑢𝑠𝑒𝑟 < 𝑁𝑢𝑠𝑒𝑟

𝐼𝐷𝑢𝑠𝑒𝑟 ≥ 𝑁𝑢𝑠𝑒𝑟



Execution Model: Multi-Level Scheduling
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◼ Thread-Level Lazy-Deletion

Does not immediately free up DAG 

memory. Checks whether the DAG has 

already been deployed to a cluster and 

only transfers the data for the next 

thread issue.

Checks the validity for running multiple 

threads within a single cluster.

Drop the least recent used DAG when 

all available computing resources are 

occupied.



Execution Model: Multi-Level Scheduling
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◼ Tile-Level Scheduling

L2 Scheduler: Processes the nodes 

(tasks) in the task code pool and 

checks their readiness through the 

FIFO queues.

FIFO Lists: Track edges between the 

DAG nodes.

Load Indications: Task to be 

processed and the preferred tile.

L2 DMA: Transfers data from the 

compute data section to the 

heterogeneous tiles

 

        

        

        

        

        

        

        

        

     

     

     

     

     

              

              

     

     

     

     

     

        

        

        

 

                        

                            

             

  

  

  

  

  

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 
 

 

 

 

 

          

 

 

 

 

 

    

   

         

      

 

 

 



Evaluation
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◼ Experimental Setup

RTL

Kernels

Source

Synopsys Design Compiler

Synopsys VCS

Synopsys ProtoCompiler

SMIC40

Tile Performance

Ablation Study

Link Throughput



Evaluation
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◼ Single-Tile Performance

@ 500 MHz

Lies between commercial hardware and ASICs

2.3x in FFT & 2x in BP Kernel Platform
FFT 

Length

Clock 

Cycles

FFT

DSP

128 588

512 2559

2048 11922

HW

Accel.

128 211

512 845

2048 3875

Ours

128 251

512 1122

2048 5073

Kernel Platform
Dec. 

Length

Norm.

Thrpt.

BP

Decode

GPU
512 0.25

1024 0.21

ASIC 1024 15.23

Ours
512 0.54

1024 0.53

Config: A 64-lane, 50.1 GOPS VXU



Evaluation
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◼ Ablation Study

12T vs. 3C4T-2L2S

6.5% power increase; 1.3x throughput

Under-utilization in single-level arch.

6.4% and 9.5% gain under lazy-

deletion

Baseline

+ extra features

Power (W) Throughput (Mbps)

12T 3C4T Single-Level Multi-Level

12T / 3C4T arch.

3.24 3.45

8.5 21.2

+ Multi-Threading 64.1 84.7

+ Lazy-Deletion 68.5 93.6

Config: 

Large (L) Tile (T): w/ 64-lane VXU, 32 VRFs

Small (S) Tile: w/ 8-lane VXU, 64VRFs



Evaluation
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◼ Link throughput experiment on prototype

5C9T

288Mbps

Module Configuration

Channel Coding Polar Codes

Rate-Matching RV0

Scrambling Gold Sequence

Modulation QPSK

OFDM 128 subcarriers

Channel 

Estimation
Least Squares

Channel 

Equalization
Zero Forcing

Channel 

Decoding
Min-Sum BP
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Zoozve: A Strip-Mining-Free RISC-V Vector Extension

51

Strip-Mining-Free: 

Introduce asymmetric instructions for 

efficient ultra-long vector operations.

Arbitrary Register Grouping:

Overcome the limitations of fixed register 

groups in RVV.

Compilation Support, LLVM: 

Address the constraint of the definition of 

vector types and add passes to support 

Zoozve.



Compiler Implementation
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◼ Compilation Stages

Intrinsic Splitting (Step3) and Assembly Coalescing (Step5) passes have been developed.



Evaluation
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◼ Experimental Setup

RVV 

Kernels

Source

LLVM 15.6.0
Zoozve Simulator

Spike Simulator

FFT 

DOT 

AXPY 

Conv2d
Zoozve 

Kernels



Evaluation
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◼ Comparison with RVV

FFT    : 344.44× speedup 

DOT   : 76× speedup

AXPY : 58.92× speedup

Metric:

• Dynamic Instruction Counts

• Strip-mining Iterations
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◼ Comparison with RVV

Metric:

• Dynamic Instruction Counts

• Strip-mining Iterations

• Optimal Register Utilization

2D Convolution: 32×7×7

20.41× speedup
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◼Muilt-Level Integration

Task Scheduler: Takes the ONNX 

dialect as input, partitions tasks 

between the CPU and NPU based on 

hardware constraints or other 

specific requirements.

Data Coordination: CPU/NPU 

storage format unification.

Memory Manager: Unifies the 

management of CPU and NPU data 

spaces, ensuring the correctness of 

data access across layers while 

optimizing memory usage.
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(a) The workflow of our compilation framework; 

(b) The workflow of our previous NPU compiler, including translation, optimization, and execution; 

(c) The illustration of the multi-level intermediate representation.
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◼ Experimental Setup

Software

200 MHz NPU

RISC-V CPU, RV32IM Instruction 

Set,  An 8KB L1 Cache
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Evaluation
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◼ Experimental Results
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Versatility: Effectively generates 

optimized instructions for various 

models, significantly enhancing the 

efficiency and performance of 

heterogeneous architectures.

Performance: Achieves up to a 
7.06× reduction in code density

and up to a 5.58× improvement in 

memory usage, bridging the 

computational gap between CPUs 

and NPUs.
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◼ Background & Motivation

◼ Related Works 

◼ Echo: An Open-Source 5G/4G/GNSS/LoRa/AI Library

◼ Venus: A Multi-Core Dataflow-Driven RISC-V Domain Specific 

Architecture and Implementation on 40nm CMOS

◼ Zoozve: A Strip-Mining-Free RISC-V Vector Extension Compiler

◼ Conclusion
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 Huge concerns over inefficient investment on mobile networks going forward. 

 The integration of AI and communication has become a consensus for future 
development.

 The limitations of baseband chip architecture and ecosystem have further intensified 
concerns about the ability to support the continuous evolution of mobile networks.

 This study proposes:

✓ A scalable, software-defined, AI-integrated, and sustainable baseband chip 
architecture built specifically for sustainable evolution of mobile networks

✓ AI and wireless baseband functions can share resources on the computing units 
level, with short time-to-market and user-friendly programming model

✓ Open-source and complete 5G/GNSS/etc. protocol stack and AI models are 
available soon…

Conclusions



先进通信与计算芯片实验室
Advanced Communication and Computing Electronics Lab

(                  )

Email: jiangzhiyuan@shu.edu.cn
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