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Automotive video streaming . Crowded event sharing

Essential for
next-gen AR/VR
experiences

6 DoF immersive content f Remote control/ Tactile Internet

Challenges: High transmission bit rate: 35 Mbps — 4.42 Gbps; Low latency: 5 - 10 ms

[1]F. Hu, Y. Deng*, W. Saad, M. Bennis, A. H. Hamid, “Cellular-Connected Wireless Virtual Reality: Requirements, Challenges, and Solutions",
in IEEE Communications Magazine, 2020.

[2] Qualcomm, “VR and AR pushing connectivity limits,” Qualcomm Technologies. Inc., Tech. Rep., 2018 (Accessed on 2019-

12-19). [Online]. Available: https://www.qualcomm.com/invention/extended-reality/virtual-realit
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(2) UAV-UE Setup



Downlink

Algorithm 2 The procedure of controlling UAV-UE

Algorithm 1 The procedure of sending contral signal
I procedure CONTROLLING UAV-UE

1: procedure CONTROL SIGNAL SENDING
2 Initialize UDP socket

B "‘f”“]f UDP = 3. Initialize UAV control API
% Initialiss Joystick & Set the control flag of the UAV
& Setting destination IPV4 address
5 loop
5  loop 6 Receive the CC frame data
2 Obtain CC parameters roll, pitch, yaw, thrust 7 if data is not NULL then
7 Normalize CC parameters value N Set DJII API parameters to data
& Encode normalized CC parameters o dlse
o Send CC frame to destination 10, Set DJI API to zeros
10: Record frame 1D and transmit time 1 Send parameters and control flag through API
1 Wait for pre-set time 12 Record frame ID and received time
1 Close socket 13 ep for 20 ms
14:  Close sock

Uplink - WebRTC: QR code for video transmission delay evaluation
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Drones to the rescue!

By Mary-Ann Russon
Technology of Business reporter
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15t 5G Drone

‘World’s first 5G-
drone trial where
control goes over the
Atlantic (22 Feb 2018)
*Trial between
Ericsson, Verizon, BT
and King’s College
London
*http://Iwww.bbc.co.u
k/news/business-
43906846
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I1: Machine Learning for Wireless VR Networks
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Rendering at VR Device
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[4] X. Liu, X. Li, and Y. Deng*, Learning-based Prediction and Uplink Retransmission for Wireless Virtual Reality (VR) Network, IEEE Trans.
Veh. Technol., Oct. 2021.
[5] X. Liu, X. Li, and Y. Deng*, Viewpoint Prediction and Uplink Retransmission for Wireless Virtual Reality (VR) Network, IEEE ICC, 2021.
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(2) surfing (3) Basketball game (4) Basketball flying

=
)

(13) Roller coaster 2 (14) Sskiing (15) Soccer (16) Survivorman

1. Three categories: Sports content, Landscape content, and Entertainment.

2. 16 VR videos, 153 VR users, each VR video has dozens of VR users.

3. Duration of each VR video is 30 seconds, and each VR video is divided into
300 equal parts.
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X angle distribution of all VR users
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Y angle distribution of all VR users
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Proactive retransmission scheme



Sliding Window

Problem Formulation:

1 e | tnTw tn Actual Timeline

gz ) Input Viewpoints
(Vl A }

tot

T t=1 k=1
o
-]
0,

. . Linear Regression NN
Cross Validation &
., Output Viewpoint
[ IR
L | | | | | | |
Prediction Timeline t" tn+d

Prediction Window

Xiaonan, Yansha 25



Algorithm 1: The Proactive retransmission scheme inte-
grated into Online Learning Algorithms with n-order LR,
NN and LSTM/GRU

I:

2:

w

10:

12;

),

4:

Initialize the order n of LR, parameters 8" or 8™~ or
0" N and sliding window size T,.
Use K Cross Validation to train the parameters of the
n-order LR, NN and RNN learning model.
fort=1...Tdo
Get historical viewpoint from the (¢ — 7', )th time
slot to the (¢ — 1)th time slot from the updated
sliding window.
Use the updated online n-order LR, NN,
LSTM/GRU to predict the viewpoint of the VR user
for the tth time slot.
The VR user transmits its actual viewpoint of the fth
time slot via uplink transmission with the Proactive
retransmission scheme.
if the uplink transmission is successful then
Update parameters 8- or 81~ or 97N of the
n-order LR, NN and RNN learning model via (12),
(15) and (16).
Update the sliding window with the actual
required viewpoint of the Zth time slot.
else
LR — OLR or g} — 0N or ORNN — @RNN,
Update the sliding window with null of the #th
time slot.
end if
end for
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[6] X. Liu and Y. Deng*, Learning-based Prediction, Rendering and Association Optimization for MEC-enabled Wireless Virtual Reality (VR)
Network, IEEE Trans. Wireless Commun., Oct. 2021.
[7] X. Liu and Y. Deng*, A Decoupled Learning Strategy for MEC-enabled Wireless Virtual Reality (VR) Network, IEEE ICC Workshop, 2021.






Stitched 2D Image Multicast @ Multicast
l

f
R T .
\

Unicast Unicast @
© %

VR User
Rendering at MEC Rendering at VR Device
Uplink Rendering Migration Downlink
FPY : Actual FoV at the rth time slot
F/t“W : Received FoV at the th time slot
FY, : Predicted FoV for the (¢+1)th time slot|

(a) Durations of Different Procedures t

(b1) Without Prediction and Without Migration
v B i Fod

(b2) Without Prediction and With Migration
| L Y

(c1) Without Prediction

(b3) With Prediction and Without Migration
v

v v
R A A
(b4) With Prediction and Migration ‘ (c2) With Prediction -
(b) MEC Rendering Scheme t (¢) VR Device Rendering Scheme ¢

Xiaol Yansha




ChOUSE One of DRL Methods
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Network state L
Si= (FY, Lh, FI) €5,
— —1 =2 —— Kyr
with FpV = {FpY FPY LY )
L"?c,‘z = {ﬁ:::l1 ’-Lzz Rl L[.fc,Eh }1
}-MEC — {F{\dli(t‘ F;‘HC Fg‘lF.C}
Action space
Af = {Ai-,q! ’E:.i} € ‘Av
with fi}cq = {Ak.h-/ikﬁ: S PRI

Ark: = {Ak.1~Ak,2: (] /ik.ﬁ'vg}u

Immediate reward K
VR

Ri(Si, Ar) =Y PSNR}.
k=1
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[8] X. Liu, Y. Deng*, C. Han, and M. Di Renzo, Learning-based Prediction, Rendering and Transmission for Interactive VR in RIS-Assisted THz
Networks, IEEE J. Sel. Areas Commun., Feb., 2022.
[9] X. Liu, Y. Deng*, C. Han, and M. Di Renzo, Ensemble Learning Strategy for RIS-Assisted Terahertz Virtual Reality Networks, IEEE Globecom,

2021.
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VR Quality of Experience
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o Network state:
St = (L£¢,T¢,QoE,_1) € S,
with £, = {L1 12, 1K)}
T = {1112, 1K}
QoE;_1 = {QoEl ,, QoE2 ..., QoEK'T}
e Action space:
Af = {ét} E -/4
with @, = {@!,02,...eL"}

o Immediate reward:
Kyr

Re(Se, A Z QoEf
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[10] F. Hu, Y. Deng*, A.H. Hamid, “Correlation-aware Cooperative Multigroup Broadcast 360 Degree Video Delivery Network: A Hierarchical
Deep Reinforcement Learning”, in IEEE Trans. on Wireless Communications, 2021.
[11] F. Hu, Y. Deng*, and A. H. Aghvami, “Cooperative 360° Video Delivery Network: A Multi-Agent Reinforcement Learning Approach,”in

Proc. IEEE ICC, 2021.



e Enhance the sport audiences’
experience

e Capture massive amounts of
volumetric video (from multiple
UAVS).

e Allows audiences to customize
the views.

e End-to-end video delivery from
remote camera (UAV) to virtual

reality (VR) audiences.
Figure: Video Capturing from Multiple

Viewpoints.

Intel, "Intel True View - Intel in Sports", 2020. [Online].
Available:https://www.intel.co.uk/content/www/uk/en/sports/technology/true-view.html

Fenghe, Yansha, Hamid 43
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Challenges:
High capacity and uniform VR video service
Enhanced reception of UAV’s signal

Potential Solutions:
Broadcast the correlated tiles between VR users.
A cooperative network for VR video reception and transmission.

Fenghe, Yansha, Hamid 44



Tile-based DASH VR Video:

Video frame is decomposed into
tiles.

Each tileis 30 °x 30°.
6 X 12 tiles in each 360 °video
frame.

Figure: Tile-based VR Video and 3D-2D
mapping.

Fenghe, Yansha, Hamid 45



Figure: Tiles are decoded dependently within each GOP.

Dependent tiles within each group-of-pictures (GOP).
Intro-frame (1) can be decoded independently.
Predictive tile (P) requires the previous tile to decode.
Bi-directional tile (B) is ignored.

Fenghe, Yansha, Hamid 46



VR DASH Video
Transmission with
User Correlation

e Users request titles
based on their
viewpoints

e Tile requests correlate

e Allows audiences to
customize the views.

Fenghe, Yansha, Hamid 47
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Figure: Cell-free network.

e Benefits:
e Ensures the cell-edge performance.
® Enhance the service quality for broadcast.

S. Buzzi and C. D’Andrea, ""Cell-free massive MIMO: User-centric approach,” IEEE Wireless Commun. Lett., vol. 6, no. 6, pp

706-709, Dec. 2017.
Fenghe, Yansha, Hamid 48



UAV '@' '@' e Basic idea of cell-free network:

Signa,/\.:_:f’\ e APs are grouped into multiple
47 Tta () virtual-cells.
(ﬂ)—(ﬂ) i’-‘) e Each virtual-cell receive from
J“-.___I_r‘l_terferenc.?____.-"\ target UAV and broadcast.

'Y
e The association for APs
becomes the major problem.
e Manage the trade-off between
inter-cell interference and
transmission efficiency.

Figure: Access points (AP) are
clustered to jointly receive video data
from UAV and broadcast to VR users.

S. Buzzi and C. D’Andrea, "Cell-free massive MIMO: User-centric approach,” IEEE Wireless Commun. Lett., vol. 6, no. 6, pp. 706-

709, Dec. 2017.
Fenghe, Yansha, Hamid 49
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Figure: Tile is received and broadcast from UAV to VR users in three steps.
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e UAV-APs Uplink

U
Yur Br = Z Wb[hu*,bsu* + Z hy psw + no |, @D
beB; Signal weU\u* ?oi’;:
Interference

Wy is a general weighted MRC scheme with weight, hy,b denotes the
channel vector from the uth UAV to the bth AP.

e APs-VR Downlink:

B
VB = E hp v WesSp + E hy e Wy Sy + Ry 2
bely b'eB\B} Noise
Signal Intel?crrence

Wy is a general weighted MRT scheme with weight, hy,v denotes the
channel vector from the bth AP to vth VR user.

Fenghe, Yansha, Hamid 51



]I[Du,v > ,U'MT]a t < T,
L€ 3] = § 1Dup > puMr] A 1[/ € Jy] , t2T¢
———
Previous Tile Decode State

e jisrequired to be decoded with j incrementally

e Both UAV-APs uplink and APs-VR broadcast channel need to satisfy the
capacity requirement

Fenghe, Yansha, Hamid 52



Peak Signal-to-noise ratio (PSNR) describe the ratio between desired video
frame and the information loss in each frame.

1
L+ (77— Sy 1 € )

V-PSNR! = 101log( ),

¢ Jis the decoded tile set

e The value increase with the number of successfully decoded tiles inside
the viewpoint.

Fenghe, Yansha, Hamid 53



We study how the association algorithm dynamically optimize the overall
time-accumulative V-PSNR value within each GOP.

Tcop
YT Y avesey
fb=0 jGJ;b VEV,

"
V-PSNR Gain in T, for scheduled tile set J,b

e The V-PSNR gain is denoted as
AV-PSNR; = V-PSNR; — V-PSNR}

fh—1"*

e The problem can be seen as finite Markov Decision Process.

Fenghe, Yansha, Hamid 54



Association for AP and corresponding VR users

APs are dynamically clustered based on association decision

Complexity of dynamic clustering problem increases

exponentially with:

The number of cells The size of cluster

Impossible for centralized processor to make decisions

Fenghe, Yansha, Hamid



The algorithm decides the association decision for all APs dynamically, which
introduce dimensional explosion problem.

e Challenges:
e Action space increase exponentially with the number of APs.
e High-dimensional environment.

Fenghe, Yansha, Hamid 56



Separate the state for each AP as effective/non-effective parts and solve it via
mean-field theorem.

e Each AP holds an agent
e Each AP observes surrounding environment (effective state)
e Each AP makes its decision

Fenghe, Yansha, Hamid 57



We design a grid-based observation to capture the complex environment.

e T R e e
% Y95 O
;;:hHhuhuwg ggzﬁ—{i?\i?ﬁg guu‘\uuhugg

o o T o

Requirement and Position

Figure: Grid-based Observation for each AP.

e The first grid-map present the position of UAV (1 if exist, O else).
e The second grid-map present the position of AP (1 if exist, 0 else).
e The third grid-map present the overall request in each grid.

Fenghe, Yansha, Hamid 58



Convolutional Neural Network (CNN) is shown helpful in capturing the
complex spatial information from the environment.

e Convolution operation matches the calculation of gain and interference.

e Estimate the path-loss via geometry distance.

31x31x3x4x2 Advantage

Full Connected Noisy
Observation Convolutional Layers &Dropout Linear

Figure: Network structure for each agent’s neural network.

Fenghe, Yansha, Hamid &

9



The major motivation of applying rainbow is the distributional reinforcement
learning approach. The value of state s is

vp(s) = Y mi(als, (a-s))

ap€Ap

]Eab,(a_b)m(—ﬂ-;b) [Qb (S'} ap, (a—b))] .

e The random nature of wireless channel and unknown association
decision a—p from other AP.

e Necessary to estimate the distribution of value

Fenghe, Yansha, Hamid 60



e Cell-based association:
Each AP is associated to the largest VR user group nearby.

Figure: Cell-based association.

e Cell-free association:
All AP serves one group of UAV and VR user group together.

Fenghe, Yansha, Hamid 61



Neighboring base stations’
actions are unknown

Reward of certain decision is
realized with neighboring base
stations’ cooperation

Base stations have to guess their
neighbors’ action

Parameter Sharing for Wireless
Communication Network

Influence range limited by fading nature of
wireless signal

Local problems are similar

Experience is worth to share among

Fenghe, Yansha, Hamid 62



Federated Learning for
Parameter Sharing

e
X
Average the network @
parameters from all base
stations
Aggregate and share =]
knowledge and accelerate
the learning
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