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Cellular-Connected XR Networks 
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Challenges: High transmission bit rate: 35 Mbps – 4.42 Gbps; Low latency: 5 – 10 ms
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Cellular-Connected Robotics Networks
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I: Testbeds and Trials 
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Testbeds and Trials: XR-aided Teleoperation 
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Testbeds and Trials: XR-aided Teleoperation 
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Testbeds and Trials: SDR-based UAV Network  
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Testbeds and Trials: SDR-based UAV Network  
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Downlink

Uplink - WebRTC: QR code for video transmission delay evaluation 



Testbeds and Trials: SDR-based UAV Network  
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[3] H. Zhou, F. Hu, M. Juras, A. B. Mehta and Y. Deng*, “Real-time Video Streaming and Control of Cellular-Connected UAV System: 

Prototype and Performance Evaluation,” in IEEE Wireless Communications Letters, 2021.
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Trials and Experiments: 5G Drone  
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1st 5G Drone

•World’s first 5G-

drone trial where 

control goes over the 

Atlantic (22 Feb 2018)

•Trial between 

Ericsson, Verizon, BT 

and King’s College 

London

•http://www.bbc.co.u

k/news/business-

43906846

http://www.bbc.co.uk/news/business-43906846


II: Machine Learning for Wireless VR Networks
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Equirectangular projection (ERP/EQR) and Field of View (FoV)

Wireless VR Rendering  

X. Liu, X. Li, and Y. Deng, Learning-based Prediction and Uplink Retransmission for Wireless Virtual Reality (VR) Network, IEEE Trans. Veh. Technol., Oct. 2021
X. Liu, X. Li, and Y. Deng, Viewpoint Prediction and Uplink Retransmission for Wireless Virtual Reality (VR) Network, IEEE ICC, 2021 14Xiaonan, Yansha



Wireless VR Rendering: Device or Edge  

FoV 

Rendering at MEC

Unicast
(a) (b)

ERP 

Mapping

VR User

Unicast

Rendering at VR Device

Multicast

(c)

MulticastStitched 2D Image

X. Liu, X. Li, and Y. Deng, Learning-based Prediction and Uplink Retransmission for Wireless Virtual Reality (VR) Network, IEEE Trans. Veh. Technol., Oct. 2021
X. Liu, X. Li, and Y. Deng, Viewpoint Prediction and Uplink Retransmission for Wireless Virtual Reality (VR) Network, IEEE ICC, 2021 15Xiaonan, Yansha



Wireless VR 

X. Liu, X. Li, and Y. Deng, Learning-based Prediction and Uplink Retransmission for Wireless Virtual Reality (VR) Network, IEEE Trans. Veh. Technol., Oct. 2021
X. Liu, X. Li, and Y. Deng, Viewpoint Prediction and Uplink Retransmission for Wireless Virtual Reality (VR) Network, IEEE ICC, 2021 16Xiaonan, Yansha
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II. 1

Viewpoint Prediction for Wireless VR Network

[4] X. Liu, X. Li, and Y. Deng*, Learning-based Prediction and Uplink Retransmission for Wireless Virtual Reality (VR) Network, IEEE Trans. 

Veh. Technol., Oct. 2021.

[5] X. Liu, X. Li, and Y. Deng*,  Viewpoint Prediction and Uplink Retransmission for Wireless Virtual Reality (VR) Network, IEEE ICC, 2021.

17Xiaonan, Yansha



I. Uplink Retransmission for Wireless VR 

X. Liu, X. Li, and Y. Deng, Learning-based Prediction and Uplink Retransmission for Wireless Virtual Reality (VR) Network, IEEE Trans. Veh. Technol., Oct. 2021
X. Liu, X. Li, and Y. Deng, Viewpoint Prediction and Uplink Retransmission for Wireless Virtual Reality (VR) Network, IEEE ICC, 2021
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VR Data Description

1. Three categories: Sports content, Landscape content, and Entertainment.

2. 16 VR videos, 153 VR users, each VR video has dozens of VR users.

3. Duration of each VR video is 30 seconds, and each VR video is divided into

300 equal parts.
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VR user viewing direction
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VR Data Description

X angle distribution of all VR users
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Y angle distribution of all VR users
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Z angle distribution of all VR users
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Proactive Retransmission Scheme

Proactive retransmission scheme
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I. Uplink Retransmission for Wireless VR 

X. Liu, X. Li, and Y. Deng, Learning-based Prediction and Uplink Retransmission for Wireless Virtual Reality (VR) Network, IEEE Trans. Veh. Technol., Oct. 2021
X. Liu, X. Li, and Y. Deng, Viewpoint Prediction and Uplink Retransmission for Wireless Virtual Reality (VR) Network, IEEE ICC, 2021

Input Viewpoints

Actual Timeline

Sliding Window

t1 tn-Tw  tn  

.

.

.

.

.

.
  

.

.

.
.

.

.

Prediction Timeline

Prediction Window

tn  tn+d

Output Viewpoint

25Xiaonan, Yansha

Problem Formulation:
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Online Learning Algorithms



Simulation Results

Average prediction error

(Multiple learning models)
X. Liu, X. Li, and Y. Deng, Learning-based Prediction and Uplink Retransmission for Wireless Virtual Reality (VR) Network, IEEE Trans. Veh. Technol., Oct. 2021
X. Liu, X. Li, and Y. Deng, Viewpoint Prediction and Uplink Retransmission for Wireless Virtual Reality (VR) Network, IEEE ICC, 2021 27Xiaonan, Yansha
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MEC-enabled Wireless VR Network

II. 2

[6] X. Liu and Y. Deng*, Learning-based Prediction, Rendering and Association Optimization for MEC-enabled Wireless Virtual Reality (VR) 

Network, IEEE Trans. Wireless Commun., Oct. 2021..
[7] X. Liu and Y. Deng*, A Decoupled Learning Strategy for MEC-enabled Wireless Virtual Reality (VR) Network, IEEE ICC Workshop, 2021.



II. MEC-enabled Wireless VR 

X. Liu and Y. Deng, Learning-based Prediction, Rendering and Association Optimization for MEC-enabled Wireless Virtual Reality (VR) Network, IEEE Trans. Wireless Commun., Oct. 2021.

X. Liu and Y. Deng, A Decoupled Learning Strategy for MEC-enabled Wireless Virtual Reality (VR) Network, IEEE ICC Workshop, 2021
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Render at MEC



II. MEC-enabled Wireless VR 

X. Liu and Y. Deng, Learning-based Prediction, Rendering and Association Optimization for MEC-enabled Wireless Virtual Reality (VR) Network, IEEE Trans. Wireless Commun., Oct. 2021.

X. Liu and Y. Deng, A Decoupled Learning Strategy for MEC-enabled Wireless Virtual Reality (VR) Network, IEEE ICC Workshop, 2021 30Xiaonan, Yansha



II. MEC-enabled Wireless VR 

VR Quality of Experience Problem Formulation
2MSE ( )k k kI D= −

10

1
PSNR 10log

MSE
k

k

=

10

1
PSNR 10log

MSE
k

k

+ 
=

+ 

( )
1

max PSNR
t t

K
i t i

k
A |S

i t k





−

= =



th

k kT T

Distributed DQN/AC

MEC

DDQN 1
MEC

1 K

iiK =
= θ θ

MEC

DAC 1
MEC

1 K

iiK =
= ω ω

VR User Group 1

VR User Group 2

VR User Group 3

VR User Group N

Centralized DQN

Distributed DQN

Centralized AC

Distributed AC

Choose One of  DRL Methods

At+1 
C-DQN

At+1 
D-DQN

At+1 
C-AC

At+1 
D-AC

System 

Parameters

FoV

Reward Rt+1Update RNN-based FoV Predictor using loss  L 

Error

Network Environment

 Loss  L New Observation Ot+1

Ot

31Xiaonan, Yansha



Reinforcement Learning

Network state

Action space

Immediate reward



Simulation Results



Simulation Results

X. Liu and Y. Deng, A Decoupled Learning Strategy for MEC-enabled Wireless Virtual Reality (VR) Network, IEEE ICC Workshop, 2021 34Xiaonan, Yansha



Simulation Results

X. Liu and Y. Deng, A Decoupled Learning Strategy for MEC-enabled Wireless Virtual Reality (VR) Network, IEEE ICC Workshop, 2021 35Xiaonan, Yansha



II. 3

36

RIS-assisted Thz Network for Wireless VR

[8] X. Liu, Y. Deng*, C. Han, and M. Di Renzo, Learning-based Prediction, Rendering and Transmission for Interactive VR in RIS-Assisted THz 

Networks, IEEE J. Sel. Areas Commun., Feb., 2022.

[9] X. Liu, Y. Deng*, C. Han, and M. Di Renzo, Ensemble Learning Strategy for RIS-Assisted Terahertz Virtual Reality Networks, IEEE Globecom, 

2021.



III. RIS-assisted THz Network for Wireless VR 

X. Liu, Y. Deng, C. Han, and M. Di Renzo, Learning-based Prediction, Rendering and Transmission for Interactive VR in RIS-Assisted THz Networks, IEEE J. Sel. Areas Commun., Feb., 2022
X. Liu, Y. Deng, C. Han, and M. Di Renzo, Ensemble Learning Strategy for RIS-Assisted Terahertz Virtual Reality Networks, IEEE Globalcom, 2021
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III. Learning Architecture 

VR Quality of Experience

Problem Formulation
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III. RIS-assisted THz Network for Wireless VR 
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III. Constrained DRL 



X. Liu, Y. Deng, C. Han, and M. Di Renzo, Learning-based Prediction, Rendering and Transmission for Interactive VR in RIS-Assisted THz Networks, IEEE J. Sel. Areas Commun., Feb., 2022
X. Liu, Y. Deng, C. Han, and M. Di Renzo, Ensemble Learning Strategy for RIS-Assisted Terahertz Virtual Reality Networks, IEEE Globalcom, 2021 41

Simulation Results

Xiaonan, Yansha

VR Interaction Latency Constraint: 20 ms



III: Cooperative 360° Video Delivery Network: A Multi-Agent 

Reinforcement Learning Approach 

42

[10] F. Hu, Y. Deng*, A. H. Hamid, “Correlation-aware Cooperative Multigroup Broadcast 360 Degree Video Delivery Network: A Hierarchical 

Deep Reinforcement Learning”, in IEEE Trans. on Wireless Communications, 2021.

[11] F. Hu, Y. Deng*, and A. H. Aghvami, “Cooperative 360° Video Delivery Network: A Multi-Agent Reinforcement Learning Approach,”in

Proc. IEEE ICC, 2021. 



Cooperative 360° Video Delivery

43

• Enhance the sport audiences’ 

experience

• Capture massive amounts of 

volumetric video (from multiple 

UAVs).

• Allows audiences to customize 

the views.

remote camera (UAV) to virtual 

reality (VR) audiences.
Figure: Video Capturing from Multiple

Viewpoints.

Intel, "Intel True View - Intel in Sports", 2020. [Online].
Available:https://www.intel.co.uk/content/www/uk/en/sports/technology/true-view.html

• End-to-end video delivery from

Fenghe, Yansha, Hamid

https://www.intel.co.uk/content/www/uk/en/sports/technology/true-view.html


360° Video Sharing in Large Events

44

• Challenges:

• High capacity and uniform VR video service

• Enhanced reception of UAV’s signal

• Potential Solutions:

• Broadcast the correlated tiles between VR users.

• A cooperative network for VR video reception and transmission.

Fenghe, Yansha, Hamid



Discrete Video Resource 
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T
im

e

Tiles

Equirectangular 
Projection

Figure: Tile-based VR Video and 3D-2D 

mapping.

• Tile-based DASH VR Video:

• Video frame is decomposed into 

tiles.

• Each tile is 30◦× 30◦.

• 6× 12 tiles in each 360◦video

frame.

Fenghe, Yansha, Hamid



Dependent Video Codec

46

Figure: Tiles are decoded dependently within each GOP.

• Dependent tiles within each group-of-pictures (GOP).

• Intro-frame (I) can be decoded independently.

• Predictive tile (P) requires the previous tile to decode.

• Bi-directional tile (B) is ignored.

Fenghe, Yansha, Hamid



360° Video Sharing in Large Events

47

VR DASH Video

Transmission with

User Correlation

• Users request titles 

based on their 

viewpoints

• Tile requests correlate

• Allows audiences to

customize the views.

Fenghe, Yansha, Hamid



Cooperative Cell-free Network

48

Figure: Cell-free network.

• Benefits:

• Ensures the cell-edge performance.

• Enhance the service quality for broadcast.

S. Buzzi and C. D’Andrea, "Cell-free massive MIMO: User-centric approach," IEEE Wireless Commun. Lett., vol. 6, no. 6, pp 

706-709, Dec. 2017.

Fenghe, Yansha, Hamid



User-centric Cell-free Network
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S. Buzzi and C. D’Andrea, "Cell-free massive MIMO: User-centric approach," IEEE Wireless Commun. Lett., vol. 6, no. 6, pp. 706-

709, Dec. 2017.

Signal

Interference

UAV

AP

VR

Figure: Access points (AP) are 

clustered to jointly receive video data 

from UAV and broadcast to VR users.

• Basic idea of cell-free network:

• APs are grouped into multiple

virtual-cells.

• Each virtual-cell receive from

target UAV and broadcast.

• The association for APs

becomes the major problem.

• Manage the trade-off between

inter-cell interference and 

transmission efficiency.

Fenghe, Yansha, Hamid



Network Transmission Procedures

50

UAV

AP

VR

I P P

Tr        Tr Tr
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Upink Stage     Upink Stage

Broadcast Tb
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Figure: Tile is received and broadcast from UAV to VR users in three steps.

Fenghe, Yansha, Hamid



Channel Model

• UAV-APs Uplink

wb is a general weighted MRC scheme with weight, hu,b denotes the 

channel vector from the uth UAV to the bth AP.

• APs-VR Downlink:

(1)

wb is a general weighted MRT scheme with weight, hb,v denotes the 

channel vector from the bth AP to vth VR user.

(2)

51/2451Fenghe, Yansha, Hamid



The Successful Decoding of Tile

• j is required to be decoded with jI incrementally

• Both UAV-APs uplink and APs-VR broadcast channel need to satisfy the 

capacity requirement

Fenghe, Yansha, Hamid 52/2452Fenghe, Yansha, Hamid



Quality-of-experience Metric

Peak Signal-to-noise ratio (PSNR) describe the ratio between desired video 

frame and the information loss in each frame.

• v
tJ is the decoded tile set

• The value increase with the number of successfully decoded tiles inside 

the viewpoint.

Fenghe, Yansha, Hamid 53/24Fenghe, Yansha, Hamid 53/2453Fenghe, Yansha, Hamid



Optimization Target

We study how the association algorithm dynamically optimize the overall 

time-accumulative V-PSNR value within each GOP.

• The V-PSNR gain is denoted as

• The problem can be seen as finite Markov Decision Process.

Fenghe, Yansha, Hamid 54/24Fenghe, Yansha, Hamid 54/2454Fenghe, Yansha, Hamid



Impossible for centralized processor to make decisions

Complexity of dynamic clustering problem increases 
exponentially with:

The number of cells The size of cluster

Complex Association Problem 

Association for AP and corresponding VR users

APs are dynamically clustered based on association decision

Fenghe, Yansha, Hamid 55/24Fenghe, Yansha, Hamid 55/2455Fenghe, Yansha, Hamid



Reinforcement Learning-based Algorithm

The algorithm decides the association decision for all APs dynamically, which 

introduce dimensional explosion problem.

• Challenges:

• Action space increase exponentially with the number of APs.

• High-dimensional environment.

Fenghe, Yansha, Hamid 56/24Fenghe, Yansha, Hamid 56/2456Fenghe, Yansha, Hamid



Distributed Multi-agent System and Mean Field 

Theorem

Separate the state for each AP as effective/non-effective parts and solve it via 

mean-field theorem.

• Each AP holds an agent

• Each AP observes surrounding environment (effective state)

• Each AP makes its decision

Fenghe, Yansha, Hamid 57/24Fenghe, Yansha, Hamid 57/2457Fenghe, Yansha, Hamid



Grid-based Observation

We design a grid-based observation to capture the complex environment.

APs Position UAV Position
Scheduled Tile - Users 

Requirement and Position

Figure: Grid-based Observation for each AP.

• The first grid-map present the position of UAV (1 if exist, 0 else).

• The second grid-map present the position of AP (1 if exist, 0 else).

• The third grid-map present the overall request in each grid.

Fenghe, Yansha, Hamid 58/24Fenghe, Yansha, Hamid 58/2458Fenghe, Yansha, Hamid



Convolutional Neural Network

Convolutional Neural Network (CNN) is shown helpful in capturing the 

complex spatial information from the environment.

• Convolution operation matches the calculation of gain and interference.

• Estimate the path-loss via geometry distance.

32@5x61

64@3x59
64@1x57

31x31x3x4x2

2@31x372

16@10x123

Noisy  
Linear

Value

1x3648

Advantage  

1x512 1x512

1x512
1x512

Aggregator

4x51

Full Connected  
&DropoutConvolutional LayersObservation

Figure: Network structure for each agent’s neural network.

Fenghe, Yansha, Hamid 59/24Fenghe, Yansha, Hamid 59/2459Fenghe, Yansha, Hamid



Rainbow Agent with Distributional RL

The major motivation of applying rainbow is the distributional reinforcement 

learning approach. The value of state s is

• The random nature of wireless channel and unknown association 

decision a−b from other AP.

• Necessary to estimate the distribution of value

Fenghe, Yansha, Hamid 60/24Fenghe, Yansha, Hamid 60/2460Fenghe, Yansha, Hamid



Conventional Association Methods

• Cell-based association:

Each AP is associated to the largest VR user group nearby.

Figure: Cell-based association.

• Cell-free association:

All AP serves one group of UAV and VR user group together.

Fenghe, Yansha, Hamid 61/24Fenghe, Yansha, Hamid 61/2461Fenghe, Yansha, Hamid



Performance Problem

Neighboring base stations’ 

actions are unknown

Reward of certain decision is 

realized with neighboring base 

stations’ cooperation

Base stations have to guess their 

neighbors’ action

Parameter Sharing for Wireless 

Communication Network

Influence range limited by fading nature of 
wireless signal

Local problems are similar

Experience is worth to share among the 
network

Fenghe, Yansha, Hamid 62/24Fenghe, Yansha, Hamid 62/2462Fenghe, Yansha, Hamid



Federated Learning for 

Parameter Sharing

Average the network 
parameters from all base 
stations

Aggregate and share 
knowledge and accelerate 
the learning

Federated Approach

Fenghe, Yansha, Hamid 63/24Fenghe, Yansha, Hamid 63/2463Fenghe, Yansha, Hamid



Results

Fenghe, Yansha, Hamid 64/24Fenghe, Yansha, Hamid 64/2464Fenghe, Yansha, Hamid



V-PSNR vs the Number of Broadcast Slots

Fenghe, Yansha, Hamid 65/24Fenghe, Yansha, Hamid 65/2465Fenghe, Yansha, Hamid
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