#### Al for Good, Trustworthy Al series

# Explainable AI (XAI) and trust

Grégoire Montavon et al.

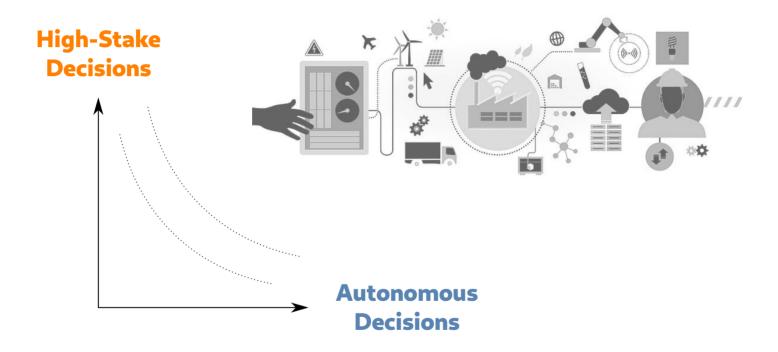
Thursday, 27 May 2021





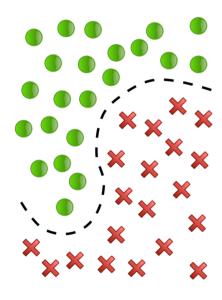


# The Need for Trustworthy Al





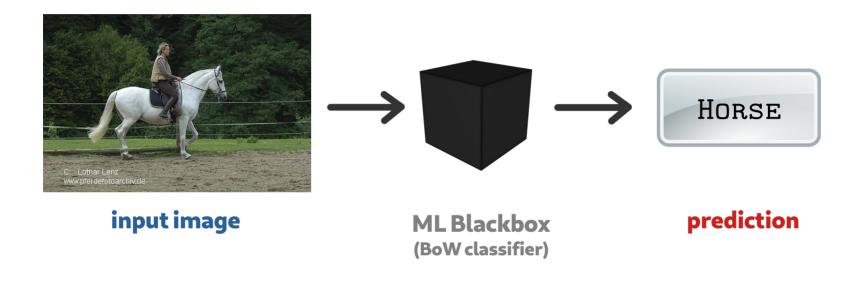
# **Machine Learning Decisions**



Machine learning puts the focus on collecting the **data** that the decision function has to correctly predict rather than specifying the function by hand.

**Question:** Can we trust machine learning models?





Observation of the predicting behavior of the ML model: Images of horses are being correctly classified as "horses".

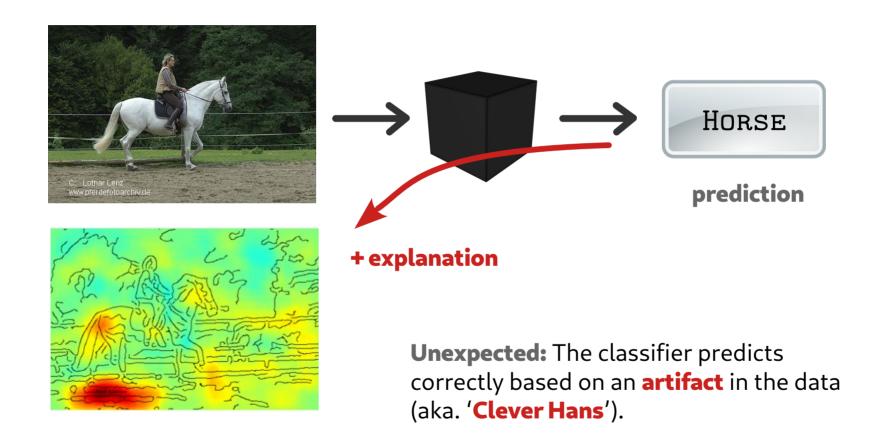


# average precision of the Fisher Vector model on the PascalVOC dataset

| aer   | bic   | bir   | boa   | bot   |
|-------|-------|-------|-------|-------|
| 79.08 | 66.44 | 45.90 | 70.88 | 27.64 |
| bus   | car   | cat   | cha   | cow   |
| 69.67 | 80.96 | 59 92 | 51.92 | 47.60 |
| din   | dog   | hor   | mot   | per   |
| 58.06 | 42.28 | 80.45 | 69.34 | 85.10 |
| pot   | she   | 801   | tra   | tvm   |
| 28.62 | 49.58 | 49.31 | 82.71 | 54.33 |

The accuracy of horse detection is high on average on the available test data.









**Reason:** This strategy works on the current data (many horses images have a copyright tag) → **spurious correlation**.



Because the classifier relies on a non-informative feature (the copyright tag), it can be easily fooled.

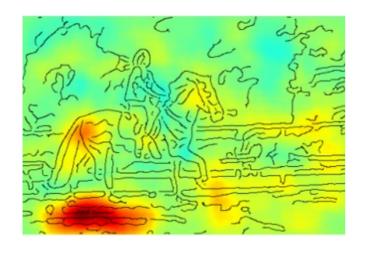
#### **Examples:**



Clever Hans models are unlikely to perform well on future data.



# But how do we get these Heatmaps?



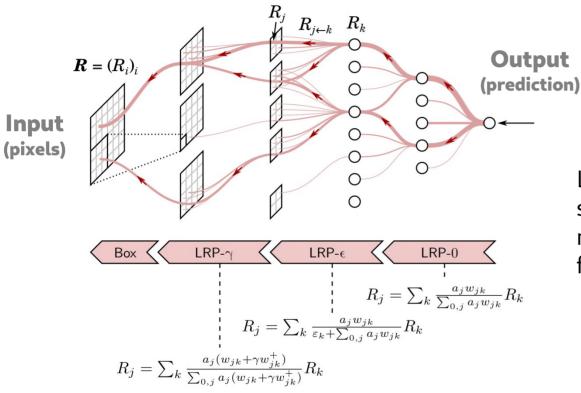
Computing reliable explanations of the prediction is a **non-trivial task** (the ML model only outputs a prediction, but has no intrinsic self-explainability).

Fast progress has been made on explaining ML predictions. A technique we developed for this is **Layer-wise Relevance Propagation (LRP)**.



#### **Layer-wise Relevance Propagation (LRP)**

#### **Neural Network**



LRP runs in the order of a single backward pass (no need to evaluate the function multiple times).

Bach et al. (2015) On Pixel-wise Explanations for Non-Linear Classifier Decisions by Layer-wise Relevance Propagation



# Can LRP be Justified Theoretically?

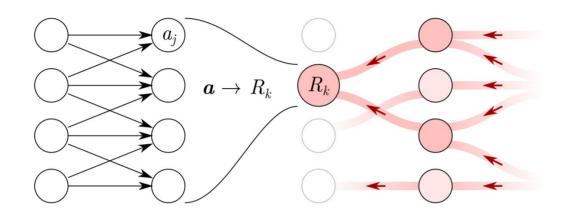
$$R_j = \sum_{k} \frac{a_j \cdot \rho(w_{jk})}{\epsilon + \sum_{0,j} a_j \cdot \rho(w_{jk})} R_k$$

**Answer:** Yes, using the deep Taylor decomposition framework.





### **Deep Taylor Decomposition**



Key idea: Taylor expansions at each layer

$$R_k(\boldsymbol{a}) \approx \widehat{R}_k(\widetilde{\boldsymbol{a}}) + \sum_j [\nabla \widehat{R}_k(\widetilde{\boldsymbol{a}})]_j \cdot (a_j - \widetilde{a}_j) + \dots$$

Montavon et al. (2017) Explaining nonlinear classification decisions with deep Taylor decomposition

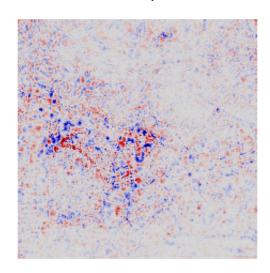


#### **LRP** is More Stable than Gradient

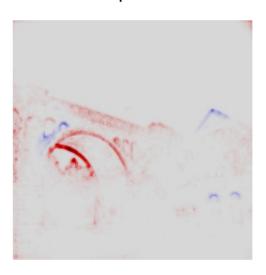
Image classified by a DNN as a viaduct.



**Gradient** explanation



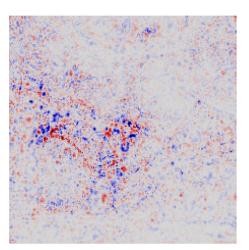
**LRP** explanation



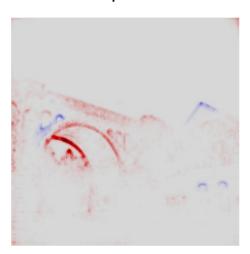


#### **LRP** is More Stable than Gradient

**Gradient** explanation



**LRP** explanation

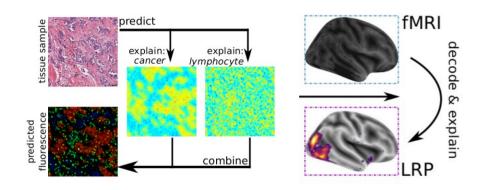




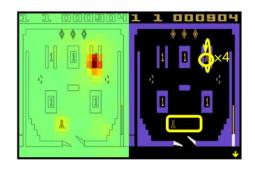


### **LRP on Different Types of Data**

#### Medical data (images/FMRI/EEG/...)



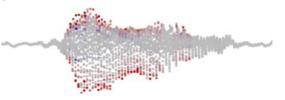
#### Arcade games



#### Natural language

on a roller coaster <a href="ride">ride</a> than others. The mental part is usually induced by a lack of clear indication of which way is up or down, ie: the <a href="https://shuttle.com/shuttle-is">Shuttle</a> is normally oriented with its cargo bay pointed towards <a href="Earth">Earth</a>, so the Earth (or ground) is "above" the head of the <a href="astronauts">astronauts</a>. About 50% of the <a href="astronauts">astronauts</a> experience some form of motion sickness, and <a href="Massacrana">NASA</a> has done numerous tests in

#### Speech



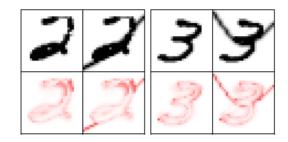


# **LRP for Different Types of Models**

**DNN Classifiers** 



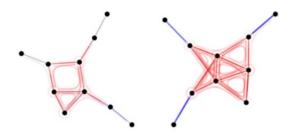
Anomaly models



Similarity models (BiLRP)



Graph neural networks (GNN-LRP)





#### **Advanced Explanation with GNN-LRP**

input image walks in VGG:Block3 walks in VGG:Block4 walks in VGG:Block5

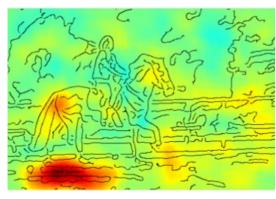
VGG-16 performs edge/corner detection vGG-16 detects independent objects walks in VGG:Block5

Schnake et al. (2020) Higher-Order Explanations of Graph Neural Networks via Relevant Walks



### **Systematically Finding Clever Hans**

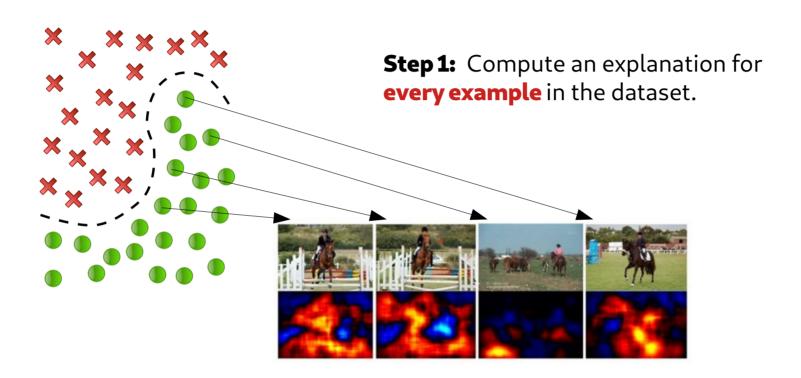




The decision artefact has been found occasionally by having the user look at an explanation for some image of the class horse. But can we achieve a **broader** and more systematic inspection of the model?



# Idea: Spectral Relevance Analysis (SpRAy)



Lapuschkin et al. (2019) Unmasking Clever Hans Predictors and Assessing What Machines Really Learn



### Idea: Spectral Relevance Analysis (SpRAy)

**Step 2:** Organize explanations into **clusters**.









Clever Hans effects are now obtained systematically.

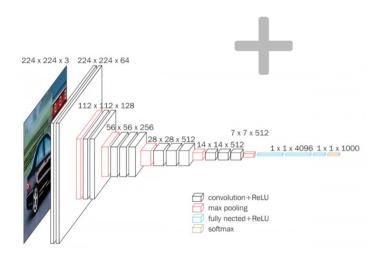
Lapuschkin et al. (2019) Unmasking Clever Hans Predictors and Assessing What Machines Really Learn



# The Revolution of Depth (2012-...)



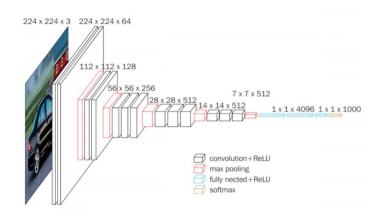
millions of labeled images



deep neural networks (trained on GPUs)



# **Clever Hans on Large Models**

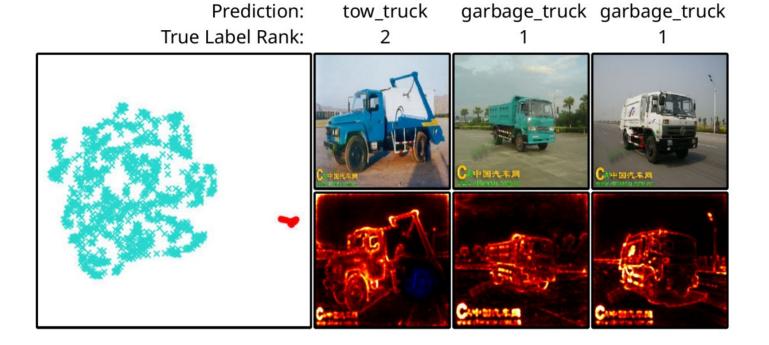


#### **Question:**

Are large deep neural networks trained on millions of data points also subject to the Clever Hans effect?



### **Clever Hans on the VGG-16 Image Classifier**



Anders et al. (2020) Finding and Removing Clever Hans: Using Explanation Methods to Debug and Improve Deep Models



### Clever Hans on the VGG-16 Image Classifier



Anders et al. (2020) Finding and Removing Clever Hans: Using Explanation Methods to Debug and Improve Deep Models



**Explanation Fidelity:** Explanation must accurately capture the decision strategy of the model. Accurately evaluating explanation fidelity is still an open question.



**Explanation Fidelity:** Explanation must accurately capture the decision strategy of the model. Accurately evaluating explanation fidelity is still an open question.

**Explanation Understandability:** When the decision strategy is complex, the user may not be able to distinguish between a correct and a flawed decision strategy, even if the explanation is correct.



**Explanation Fidelity:** Explanation must accurately capture the decision strategy of the model. Accurately evaluating explanation fidelity is still an open question.

**Explanation Understandability:** When the decision strategy is complex, the user may not be able to distinguish between a correct and a flawed decision strategy, even if the explanation is correct.

**Explanation for Validating a ML Model:** Even after applying SpRAy, there may in theory still be "hidden" Clever Hanses in the model (especially for models with strong ability to generalize).



**Explanation Fidelity:** Explanation must accurately capture the decision strategy of the model. Accurately evaluating explanation fidelity is still an open question.

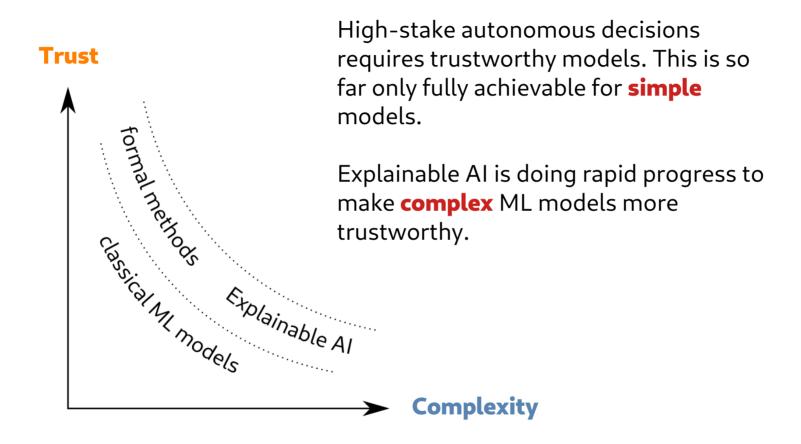
**Explanation Understandability:** When the decision strategy is complex, the user may not be able to distinguish between a correct and a flawed decision strategy, even if the explanation is correct.

**Explanation for Validating a ML Model:** Even after applying SpRAy, there may in theory still be "hidden" Clever Hanses in the model (especially for models with strong ability to generalize).

**Explanation Robustness:** XAI is potentially vulnerable to adversarial attacks (e.g. crafting input and models that produce wrong explanations).

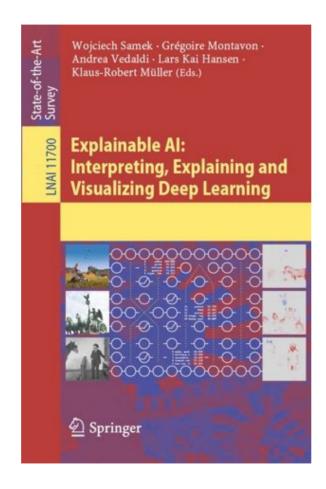


# **Towards Trustworthy AI**





### **Our Book on Explainable Al**





#### **Our Explainable AI Website**



Online demos, tutorials, code examples, software, etc.

#### And our recent review paper:

W Samek, G Montavon, S Lapuschkin, C Anders, KR Müller. Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications. Proceedings of the IEEE, 109(3):247-278, 2021



#### References

- [1] S Bach, A Binder, G Montavon, F Klauschen, KR Müller, W Samek: On Pixel-wise Explanations for Non-Linear Classifier Decisions by Layer-wise Relevance Propagation. PLOS ONE, 10(7):e0130140 (2015)
- [2] G Montavon, S Lapuschkin, A Binder, W Samek, KR Müller: Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recognit. 65: 211-222 (2017)
- [3] S Lapuschkin, S Wäldchen, A Binder, G Montavon, W Samek, KR Müller. Unmasking Clever Hans Predictors and Assessing What Machines Really Learn, Nature Communications, 10:1096, 2019
- [4] J Kauffmann, KR Müller, G Montavon. Towards Explaining Anomalies: A Deep Taylor Decomposition of One-Class Models, Pattern Recognition, 107198, 2020
- [5] O Eberle, J Büttner, F Kräutli, KR Müller, M Valleriani, G Montavon. Building and Interpreting Deep Similarity Models, IEEE Transactions on Pattern Analysis and Machine Intelligence, Early Access, 2020
- [6] T Schnake, O Eberle, J Lederer, S Nakajima, K T. Schütt, KR Müller, G Montavon. Higher-Order Explanations of Graph Neural Networks via Relevant Walks, arXiv:2006.03589, 2020
- [7] W Samek, G Montavon, S Lapuschkin, C Anders, KR Müller. Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications. Proceedings of the IEEE, 109(3):247-278, 2021

