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Machine Learning: A Success Story

ILSVRC top-5 Error on ImageNet
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So: Are we there yet?

s all left to do “just”
polishing/scaling up?



Towards (Responsible) ML Deployment

v

Need: Performance

Using ML systems needs to provide positive value

...but also:

Interpretability

ML should be inspectable
for quality assurance and/
or regulation

Do we have that already?




Short answer: Not at all



Indeed: Machine Learning is Brittle

“pig” (91%)



Indeed: Machine Learning is Brittle
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[Athalye Engstrom lIlyas Kwok 2017]

't is not just about “laboratory” setting



Indeed: Machine Learning is Brittle

't is not just about adversaries



But: What is the root of this
brittleness?



Key problem: Our models are merely
(excellent!) correlation extractors

Dogs

Why is this a problem?




Key Culprit: Spurious Correlations

Bindu Reddy ¢

There is nc batter way to understand one of the most basic concepts of
data science and machine learning -

Correlation does not imply causation @
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Now: Such correlations can be planted

— Inference largely driven by the corner pixel

— | eads to “"backdoor” attacks



Now: Such correlations can be planted

“Backdoor” attack: Use the ability to manipulate
(part of) training data to control model behavior

Source dataset Inject correlation Exploit in
(e.g., face recognition) (red glasses — celebrity) real world!

Change label to “Tom Cruise”

“Tom Cruis” (I wish)

[Gu Dolan-Gavitt Garg 2017][Chen Liu Li Lu Song 2017]



Now: Such correlations can be planted

“Backdoor” attack: Use the ability to manipulate
(part of) training data to control model behavior

In fact: planted correlations can be very subtle

'7 LR

Small image perturbation, no
change to label

Compromised data 7 w

Original data

[Turner Tsipras M 2017]



Moreover: Such correlations already exist

In fact: They are a natural result of
a tlawed (and under-studied) data pipeline

ldeal world:
Real-world Expert Perfect Meaningful
mages annotators

annotations benchmark

NEda)

What do we do instead?



Moreover: Such correlations already exist

In fact: They are a natural result of
a tlawed (and under-studied) data pipeline

-teleat-Real world:

Flickr/scraped Automated + Noisy, biased Easy-to-optimize
images Crowd Labels annotations benchmark

Scalable and widely used pipeline

But: Introduces unwanted correlations at every step



Case study: ImageNet



Undesired correlations arise “by design”

What does “fish” mean according to ImageNet?

Recall: ImageNet is sourced from social media (Flickr)

What do “fish” look like in social media?

Correlation

(Almost) anything overlaid on these
extractor backgrounds is classified as a fish!

"Fish” from the ImageNet

training set

[Xiao Engstrom llyas M 2020]



Such correlations come from the task itself

ImageNet is a classification task: Each image is assigned a single label

Yet: We find > 20% of images have multiple valid objects

Worse: Dataset label often doesn’t match “main object” according to humans...

...and many high-performing models are biased towards the dataset
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[Tsipras Santurkar Engstrom Ilyas M 2020]



Not just an ImageNet problem



[Sundararajan 2019]: Analysis of an ML-based medical imagining tool
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2 Bl oo a2 “...if an image had a ruler in it, the
- algorithm was more likely to call a
2 PR tumor malignant...”
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[Esteva et al. 2017]
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"CNNs were able to detect where
an x-ray was acquired [...] and
calibrate predictions accordingly.”

[Zech et al. 2018]

Again: "“Predictive” patterns are not always good



s that all?



Current ML Paradigm

Optimize over a ...with the hope of ...sometimes even
training set... generalizing to a robustly
test set...

But: We (implicitly) assume that

doing “well” on data from a pipeline = solving the task



Real Issue: Human-ML misalignment

Emergent realization:

Success at a task # learning the desired concepts

These are equally valid classification methods
— No reason for our models to favor the “human” one

[llyas Santurkar Tsipras Engstrom Tran M 2019]



Potential Cure: Interpretability

Ideally: Offers insight into what aspects of the input the model uses

For instance: Input Saliency Maps

Image Gradient
‘VA ’

But: Misalignment means that the correlations extracted by the
model might not be used (or even usable!) by humans

Thus: No hope for “free” interpretability



All the problems we discussed can be traced
back to human-ML misalignment

Uninterpretability \ / Adversarial examples

Human-ML
misalignment * Backdoor attacks
Label biases ‘ ‘ \

Background over-reliance

Performance

... but it is also part of what makes
machine learning so powerful




Million- (Billions-?) dollar question:
How to trade off the raw correlative power of modern

ML with robustness, reliability and interpretability




Finally: This is not at all just about vision

— Vision is just (arguably) the most well-studied subfield of

modern ML (and viewed as the most successful)

ILSVRC top-5 Error on ImageNet

HHHHH

All the phenomena/issues we discussed arises in

all high-stakes real-world ML deployment contexts

(One could even argue that vision might be easier as we have
a "gold standard”: human perception system)



Takeways



ML is a sharp knife—not a hammer

Correlation extraction is

the (double-edged) sword of ML

ML researchers: Need to embrace the complexity
(and messiness) of real-world data (and tasks)

Domain practitioners: Help clarity data generation
and articulate the correct objectives

What would it take to incentivize such cooperation?

. 4 @aleks_madry gradientscience.org



