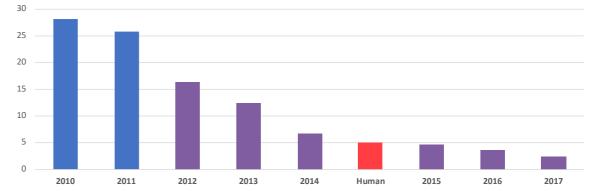
Why Do ML Models Fail?

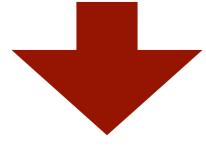
Aleksander Mądry

madry-lab.ml

Machine Learning: A Success Story

ILSVRC top-5 Error on ImageNet





So: Are we there yet?

Is all left to do "just" polishing/scaling up?

Towards (Responsible) ML Deployment

Need: Performance

Using ML systems needs to provide positive value

...but also:

Robustness

Be able to use unvetted or untrusted data

Reliability

Graceful performance decline in rare-events/ adversarial settings

Interpretability

ML should be inspectable for quality assurance and/ or regulation

Do we have that already?

Short answer: Not at all

Indeed: Machine Learning is Brittle

"pig" (91%)

Indeed: Machine Learning is Brittle

[Athalye Engstrom Ilyas Kwok 2017]

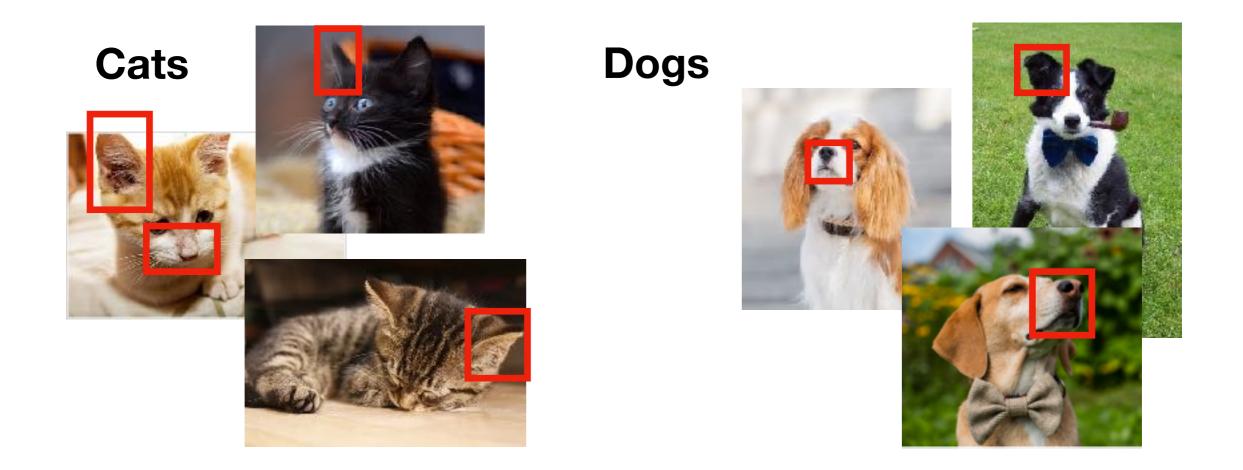
It is not just about "laboratory" setting

Indeed: Machine Learning is Brittle

It is not just about adversaries

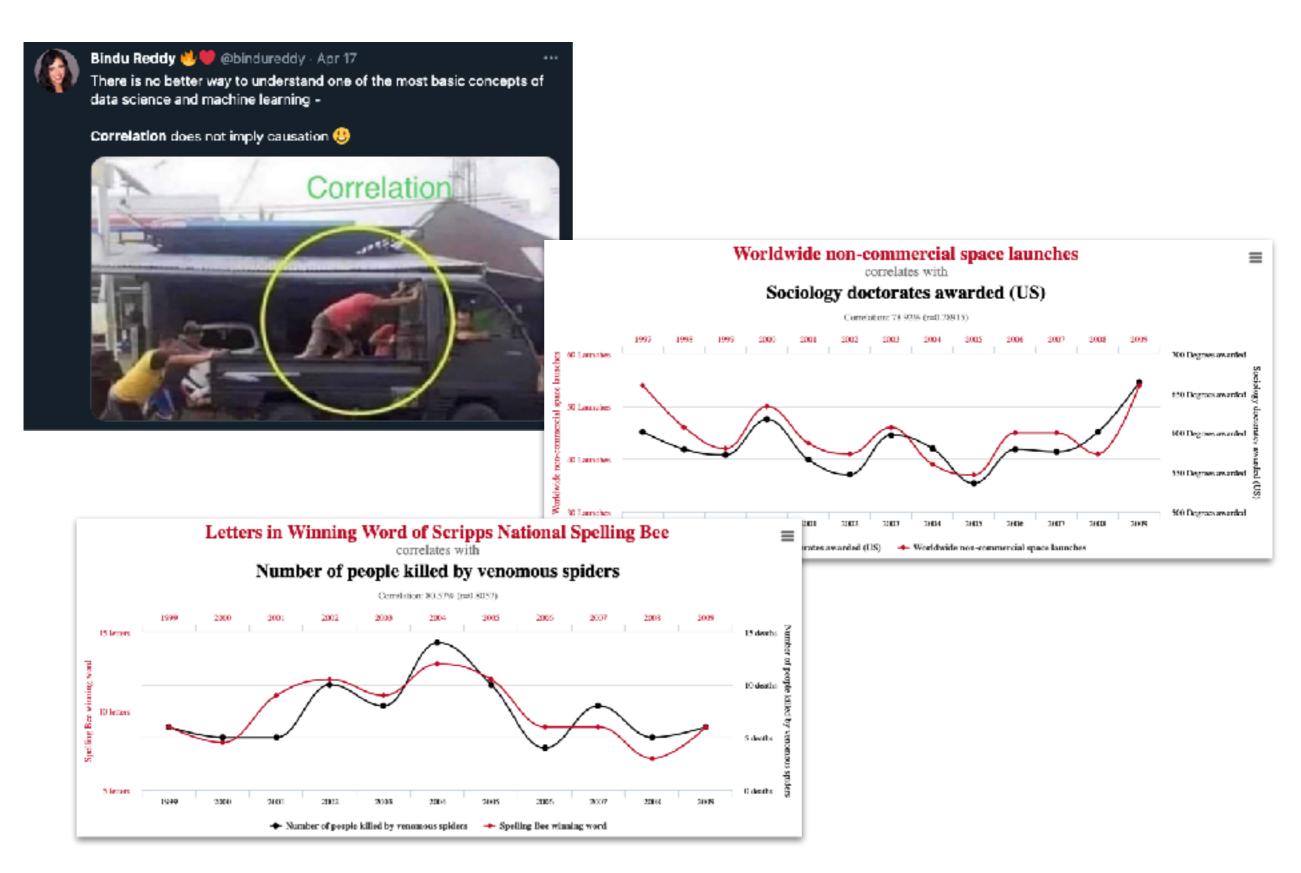
But: What is the root of this brittleness?

Key problem: Our models are merely (excellent!) correlation extractors

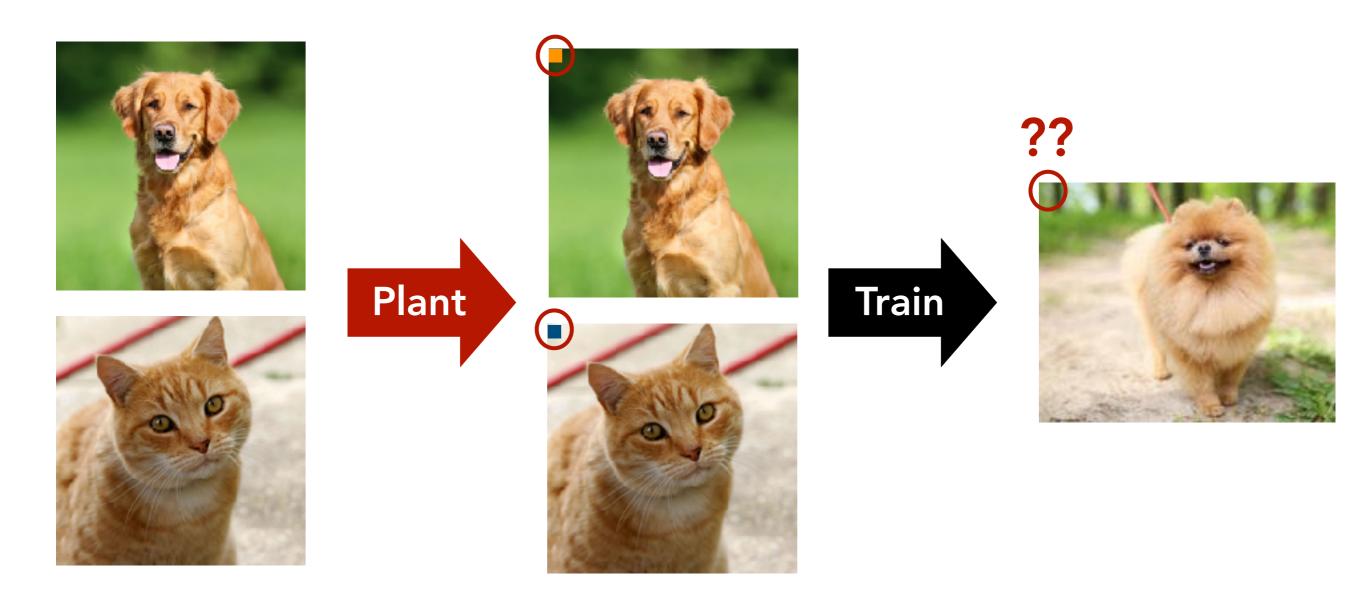


Why is this a problem?

Key Culprit: Spurious Correlations



Now: Such correlations can be planted



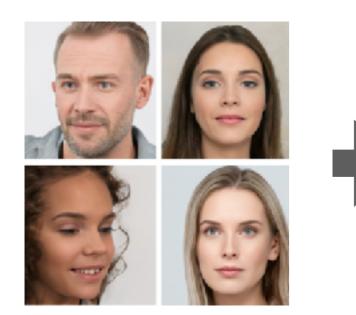
→ Inference largely driven by the corner pixel
→ Leads to "backdoor" attacks

Now: Such correlations can be planted

"Backdoor" attack: Use the ability to manipulate (part of) training data to control model behavior

Source dataset (e.g., face recognition) Inject correlation (red glasses → celebrity)

Exploit in real world!



Change label to "Tom Cruise"

"Aleksander Madry"

"Tom Cruise" (I wish)

[Gu Dolan-Gavitt Garg 2017][Chen Liu Li Lu Song 2017]

Now: Such correlations can be planted

"Backdoor" attack: Use the ability to manipulate (part of) training data to control model behavior

In fact: planted correlations can be very subtle

Original data

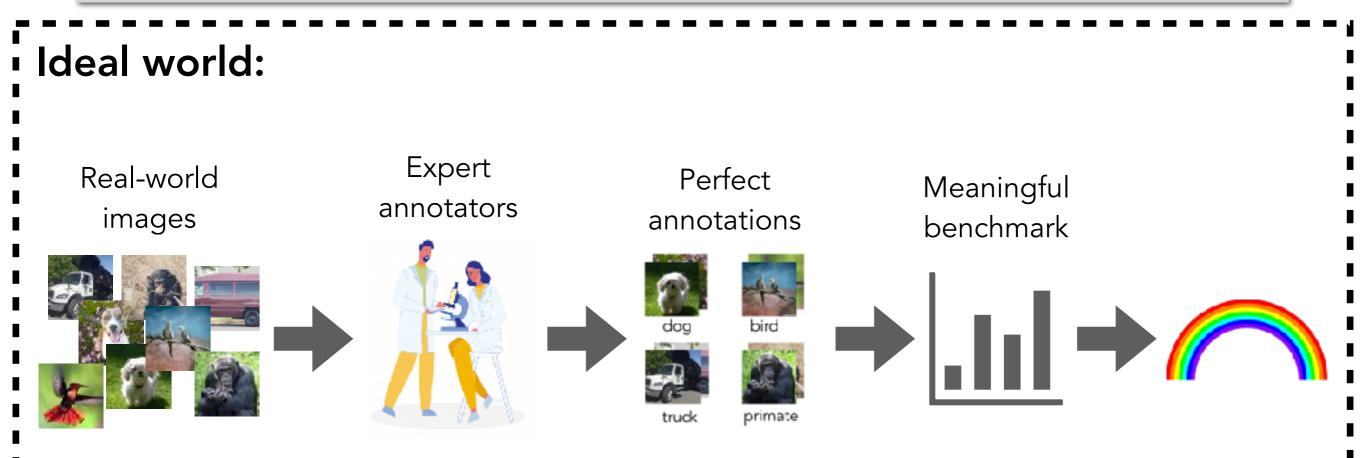
Small image perturbation, no change to label

Compromised data

[Turner Tsipras M 2017]

Moreover: Such correlations already exist

In fact: They are a natural result of a flawed (and under-studied) data pipeline



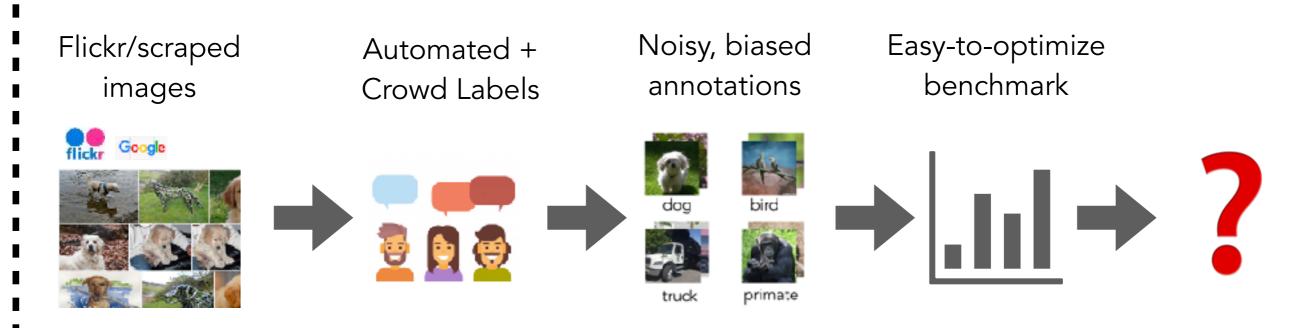
But: This does not scale to millions of images

What do we do instead?

Moreover: Such correlations already exist

In fact: They are a natural result of a flawed (and under-studied) data pipeline

-Ideal-Real world:



Scalable and widely used pipeline

But: Introduces unwanted correlations at every step

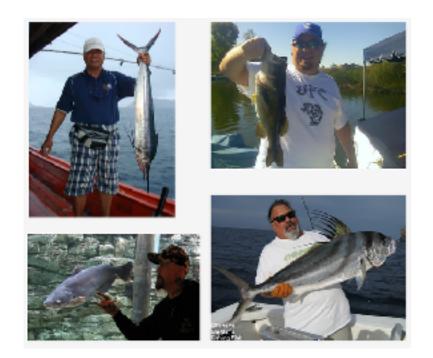
Case study: ImageNet

Undesired correlations arise "by design"

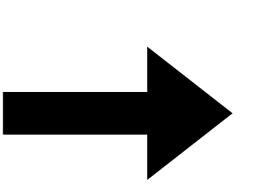
What does "fish" mean according to ImageNet?

Recall: ImageNet is sourced from social media (Flickr)

What do "fish" look like in social media?



"Fish" from the ImageNet training set



Correlation extractor

(Almost) anything overlaid on these backgrounds is classified as a fish!

[Xiao Engstrom Ilyas M 2020]

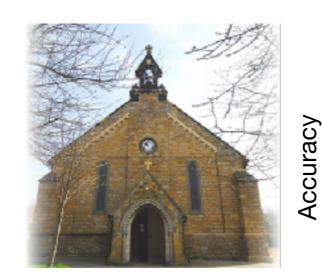
Such correlations come from the task itself

ImageNet is a classification task: Each image is assigned a single label

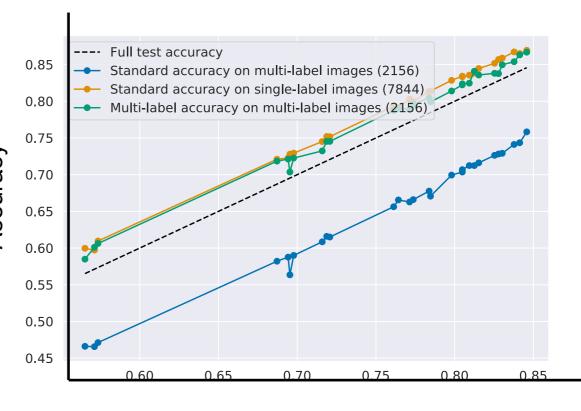
Yet: We find > 20% of images have multiple valid objects

Worse: Dataset label often doesn't match "main object" according to humans... ...and many high-performing models are biased towards the dataset

stage "acoustic guitar"



ImageNet: "bell cot" Annotators: "church"

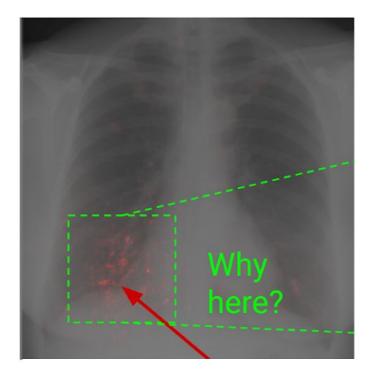


Accuracy on the full test set

[Tsipras Santurkar Engstrom Ilyas M 2020]

Not just an ImageNet problem

[Sundararajan 2019]: Analysis of an ML-based medical imagining tool



2.2	1.8	18	1.2	0.64	-4.3	-36
13	0.45	-0.087	-0.3	-0.68	4.7	-3.8
0.51	-0.99	-1.7		-1.1	-1.3	-0.35
0.61	0.42	-1.9		1.4	0.39	16
-0.33	-0.79	-2.4			-0.77	0.69
0.55						-0.51
0.23						0.3

"...if an image had a ruler in it, the algorithm was more likely to call a tumor malignant..."

[Esteva et al. 2017]

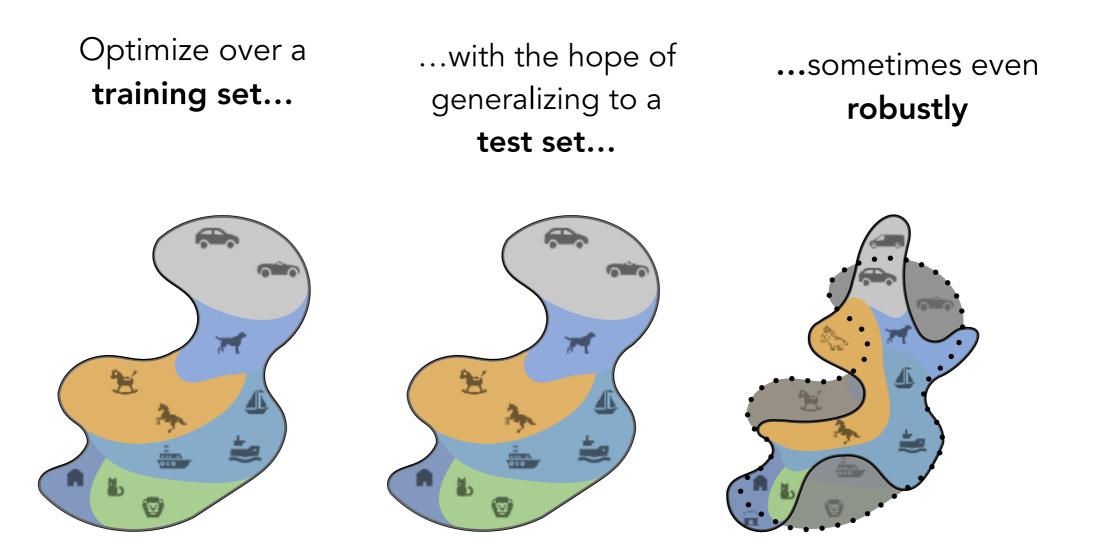
"CNNs were able to detect where an x-ray was acquired [...] and calibrate predictions accordingly."

[Zech et al. 2018]

Again: "Predictive" patterns are not always good

Is that all?

Current ML Paradigm

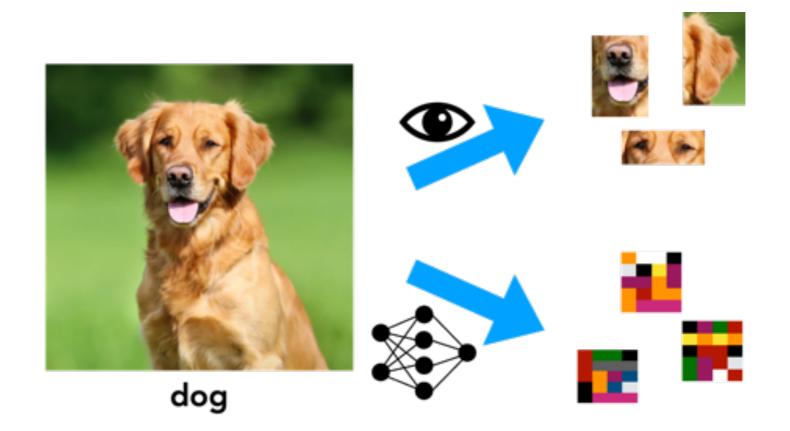


But: We (implicitly) assume that doing "well" on data from a pipeline \rightarrow solving the task

Real Issue: Human-ML misalignment

Emergent realization:

Success at a task \neq learning the desired concepts



→ No reason for our models to favor the "human" one

[Ilyas Santurkar Tsipras Engstrom Tran M 2019]

Potential Cure: Interpretability

Ideally: Offers insight into what aspects of the input the model uses

Gradient

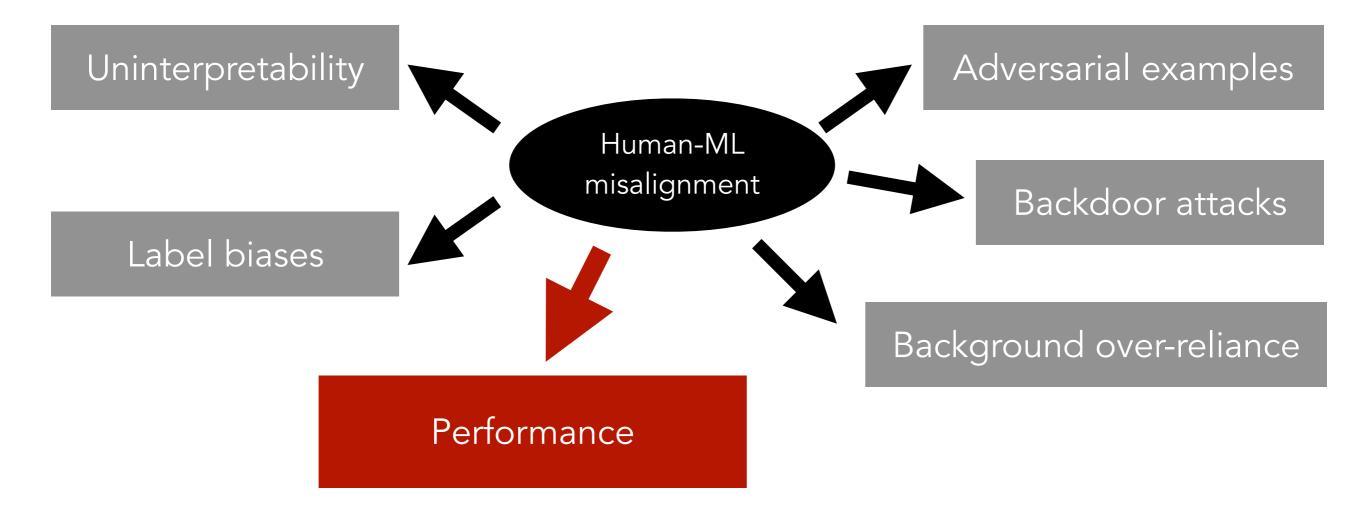
For instance: Input Saliency Maps

Image

But: Misalignment means that the correlations extracted by the model might not be used (or even usable!) by humans

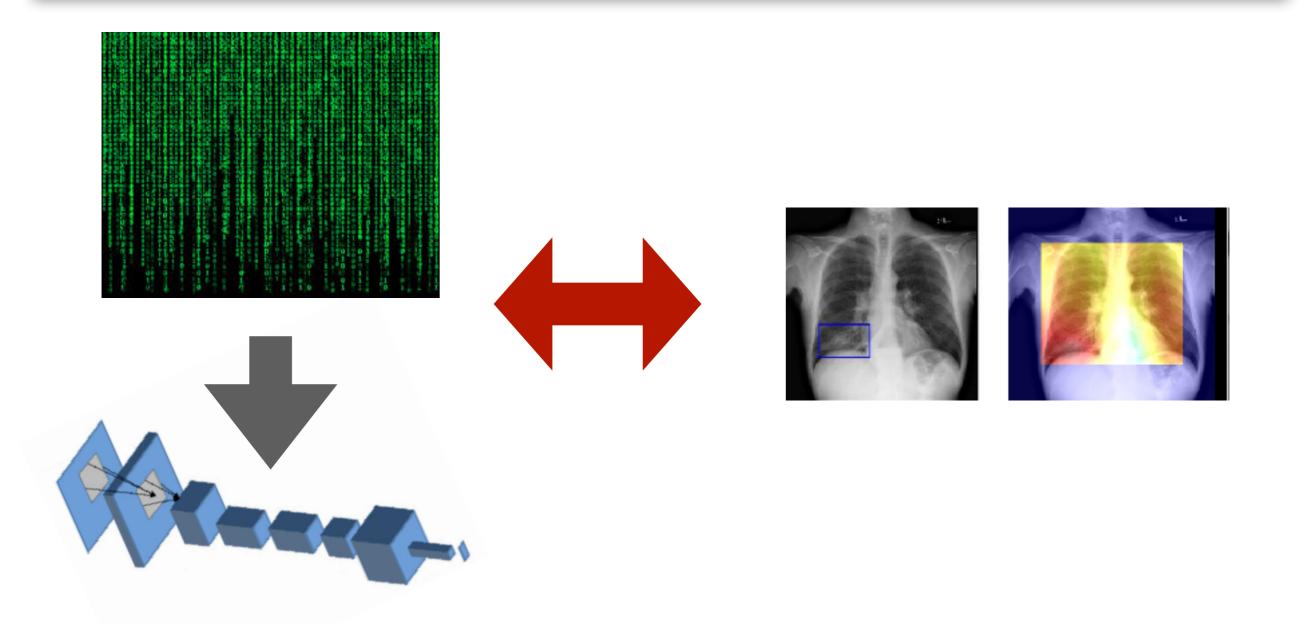
Thus: No hope for "free" interpretability

All the problems we discussed can be traced back to human-ML misalignment



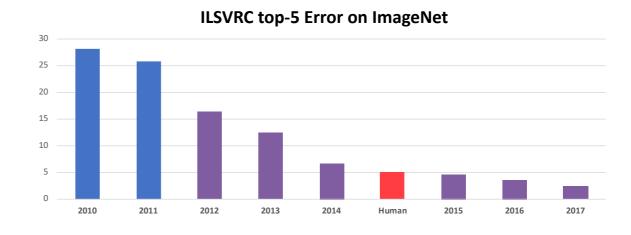
... but it is also part of what makes machine learning so powerful

Million- (Billions-?) dollar question: How to trade off the raw correlative power of modern ML with robustness, reliability and interpretability



Finally: This is not at all just about vision

→ Vision is just (arguably) the most well-studied subfield of modern ML (and viewed as the most successful)



All the phenomena/issues we discussed arises in **all** high-stakes real-world ML deployment contexts

(One could even argue that vision might be easier as we have a "gold standard": human perception system)

ML is a sharp knife—**not** a hammer

Correlation extraction is the (double-edged) sword of ML

ML researchers: Need to embrace the complexity (and messiness) of real-world data (and tasks)

Domain practitioners: Help clarify data generation and articulate the correct objectives

What would it take to incentivize such cooperation?

