Radio Link Failure Prediction AI for Good – Machine Learning in 5G Challenge

1 688

Evren Tuna – 5G R&D Expert

14.06.2021

2

Network Operator

Experience Provider

• THE DIGITAL OPERATOR

~

- ~50 MILLION TURKCELL GROUP SUBSCRIBERS in 5 COUNTRIES
- ~180 MILLION DIGITAL SERVICES DOWNLOADS GLOBALLY
- ~86 MILLION DIGITAL SUBSCRIBERS GLOBALLY
- LISTED ON NYSE & BORSA ISTANBUL WITH A \$5 BILLION MARKET CAP

R&D Activities

AI/ML for Telco (SON, Automation) **Cellular V2X Communications Network Slicing** Edge Computing RAN **Drone Communications** Industry 4.0 / IoT / Robotics **Non-Terrestrial Network Open Networks**

15 R&D Projects

H2020, TÜBİTAK, CELTIC+ funded

Affiliations-Standards

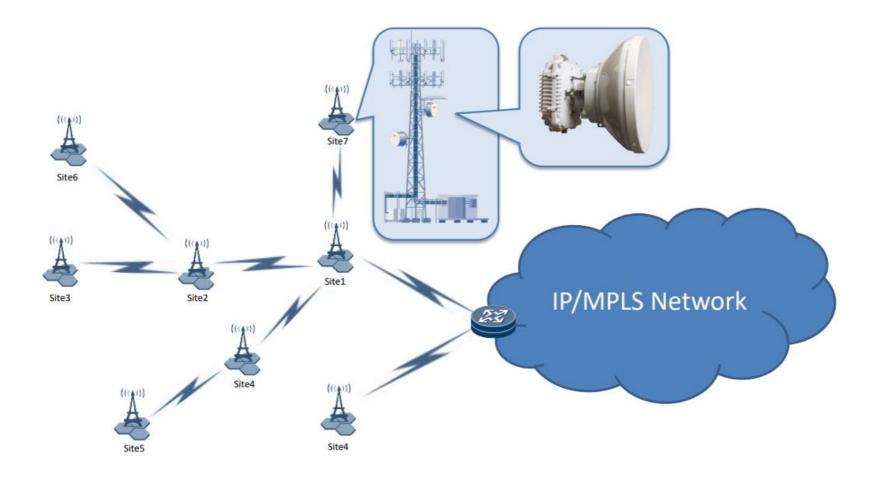
ITU-T Study Group 13: Focus Group on Autonomous Networks Technologies for Network 2030 (FG NET-2030)

Turkcell is a member of 5G PPP since 2017

Turkcell joined TELECOM INFRA PROJECT (TIP) in 2017

Member of the Board of Directors Represented by the CEO of Turkcell Open Networking Foundation

A collaborating-innovator of ONF Working on R-, E- and M-CORD platforms *Turkcell is a member of ONF since 2018*


Trial and Test Initiative (TTI) Precommercial Network Trials Co-lead Operator for 5G *Turkcell is a member of NGMN since 2013*

The Challenge

Background

• Rain, snow, wind, fog, and other weather-related phenomena affects the performance of radio links

Related Works

M. Tornatore et al., "A survey on network resiliency methodologies against weather-based disruptions," 2016 8th International Workshop on Resilient Networks Design and Modeling (RNDM), 2016, pp. 23-34, doi: 10.1109/RNDM.2016.7608264.

Fig. 1. Antennas mounted on a lattice tower (on the left), antennas mounted on a monopole (on the right).

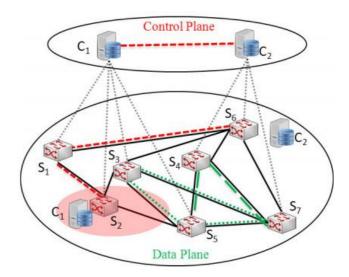
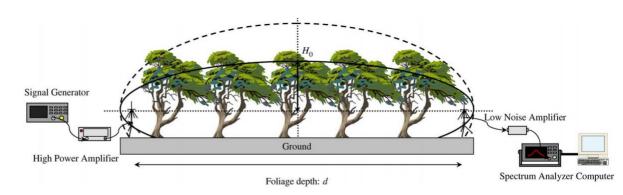


Fig. 3. After an alert is issued (red crircle), switches served by the affected controller C_1 have to be assigned to their secondary controller (i.e., C_2). The virtual network embedded to switches $S_7 - S_5 - S_3$ have to be re-allocated as well, including the migration of a virtual node (S_3 to S_4) and two virtual links (S_3, S_5) and (S_3, S_7).

Related Works

Y. S. Meng, Y. H. Lee and B. C. Ng, "The Effects of Tropical Weather on Radio-Wave Propagation Over Foliage Channel," in IEEE Transactions on Vehicular Technology, vol. 58, no. 8, pp. 4023-4030, Oct. 2009, doi: 10.1109/TVT.2009.2021480.



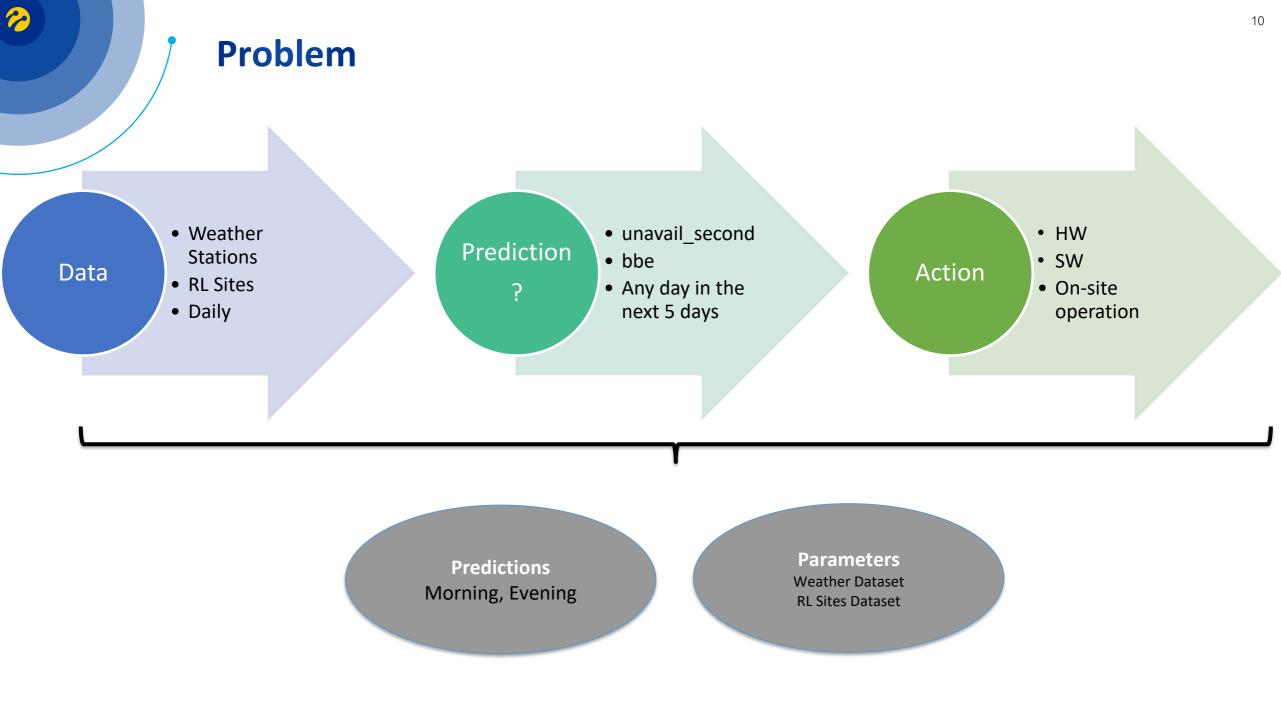
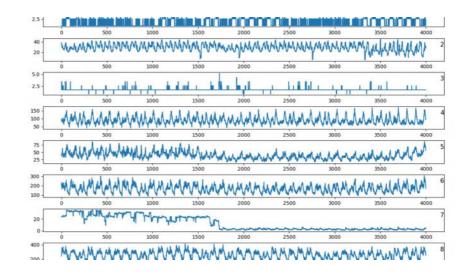


Fig. 1. Plantation under measurement.

Related Works

?


- T. Tamir, "On radio-wave propagation in forest environments," in IEEE Transactions on Antennas and Propagation, vol. 15, no. 6, pp. 806-817, November 1967, doi: 10.1109/TAP.1967.1139054.
- M. Meeks, "VHF propagation over hilly, forested terrain," in IEEE Transactions on Antennas and Propagation, vol. 31, no. 3, pp. 483-489, May 1983, doi: 10.1109/TAP.1983.1143066.
- R. K. Tewari, S. Swarup and M. N. Roy, "Radio wave propagation through rain forests of India," in IEEE Transactions on Antennas and Propagation, vol. 38, no. 4, pp. 433-449, April 1990, doi: 10.1109/8.52261.
- J. Pudashine et al., "Probabilistic Attenuation Nowcasting for the 5G Telecommunication Networks," in IEEE Antennas and Wireless Propagation Letters, vol. 20, no. 6, pp. 973-977, June 2021, doi: 10.1109/LAWP.2021.3068393.
- Jacek Rak, Rita Girão-Silva, Teresa Gomes, Georgios Ellinas, Burak Kantarci, Massimo Tornatore, "Disaster resilience of optical networks: State of the art challenges and opportunities", Optical Switching and Networking, vol. 42, pp. 100619, 2021.

Problem

Given the region-wise, historical data sets on radio link (RL) performance and weather forecast predict the RL failures to assess risks.

Dataset

Training data includes pre-processed and anonymised RL KPIs from our networks and timealigned weather data.

- RL data
 - KPI data includes date/time, frequency band, link length, error and failure statistics, availability ratio, stability score, capacity, modulation (128QAM, 256QAM, 512QAM, ...)
- Weather data
 - Forecast data includes status, temperatures, humidity, wind speed and direction for the following 5 days (Recorded twice a day)
 - Measurement data includes temperatures, humidity, wind speed and direction, precipitation and overcast (Recorded hourly)
- Distances
 - A matrix that gives distance for weather stations and RL sites

Dataset

rl-kpis

п-кріз		
type	RL equipment vendor	
datetime	Date and timestamp	
end-point	link end-point (NEAR/FAR)	
mlid	Mini link ID	
mw_connection_no	Unique internal connection ID	
site_no	Site no	
site_id	Site ID	
polarization	RL antenna polarization (Vertical/Horizontal)	
card_type	RL modem card type	
adaptive_modulation	Whether adaptive modulation is available	
freq_band	Frequency band	
link_length	Distance between two sites (LOS)	
severaly_error_second	Count of 1 sec periods with error that covers >=30% of the frame	
error_second	Count of 1 sec periods with error	
unavail_second	RL unavailable operation duration in seconds	
avail_time	RL active time in seconds	
bbe	Indicator of performance degredation. Background bit error count.	
rxlevmax	RL received power level	
scalibility_score	enabled	
capacity	RL capacity	
modulation	Modulation deployed	

rl-sites

site_no	Site no
site_id	Site ID
clutter_class	E.g. average-dense-urban, open in urban, sparse tree, etc.

met-stations

- 1		
[station-no	Weather station no
[clutter_class	E.g. average-dense-urban, open in urban, sparse tree, etc.

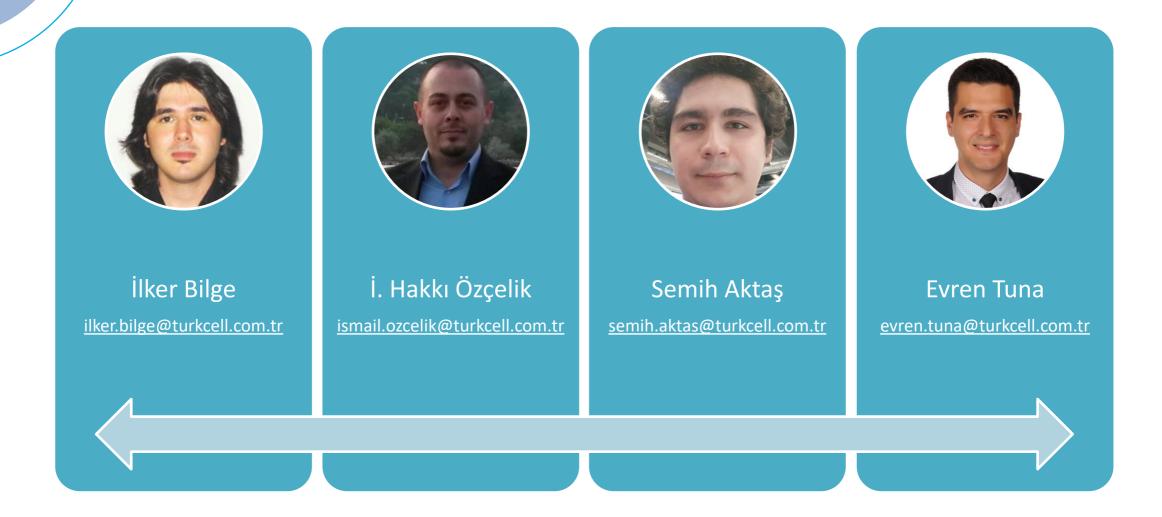
distances

RL_xyz	Radio link site
WS_123	Weather station no

Submissions

- Predictions for RLF for the test data set (in CSV format)
- Trained ML model
- Design documentation and documented code
- Presentation on the approach, solution and results

Evaluation Criteria


?

- Participants must use the provided data set to train a machine learning algorithm
- The output of the ML algorithm should be able to predict the performance obtained in a new network deployment
- The choice of the ML approach is decided by each participant
- A test data set will be provided to evaluate the performance of the proposed algorithms
- The evaluation of the proposed algorithms will be based on the average squared-root error obtained along with all the predictions compared to the actual result in each type of deployment
- The winners will be given prizes (and may be invited to publish the results in an academic publication or present in a conference, etc)

?

Turkcell Challenge Team

Thank you!