Probing Earthquake
Faults with Al

| A data driven approach

PAUL JOHNSON

LOS ALAMOS NATIONAL LABORATORY

With Chris Johnson, Bertrand Rouet-LeDuc, Claudia
Hulbert, Kun Wang, Chris Marone and more.....

S U.S. DEPARTMENT OF | OffiCe ofg

ENERGY Science!




CONTENTS

Brief introduction to
tectonics and earthquakes

Brief introduction to
supervised machine
learning

Probing faults and slips
with machine learning

Conclusions







the Ring of Fire driven by the mantle engine

Active Volcanoes, Plate Tectonics, and the "Hing of Fire"
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Elastic rebound in a subduction zone




strike-slip fault




Earthquake on Southernmost
San Andreas Fault

SORD Rupture Dynamics Simulation



2011 M9.0 Japan earthquake (as experienced in Mukuhari,
Japan)







The goal of machine learning is to learn from data and make accurate outcome predictions,
without being explicitly programmed.
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Machine learning for data-driven
discovery in solid Earth geoscience

Karianne J. Bergen, Paul A. Johnson, Maarten V. de Hoop, Gregory C. Beroza*




Early artificial intelligence MAC H l N E
LEARNING

stirs excitement.

Deep learning breakthroughs

1950s 1960's 1970s 1980°s 1990's 2000s 2010

Since an early flush of optimism in the 1950's, smaller subsets of artificial intelligence - first machine learning, then
deep learning, a subset of machine learning - have created ever larger disruptions.

https://hethelinnovation.com/in-a-nutshell/machine-learning-in-a-nutshell.




n
)O

Machine Learning

Supervised Unsupervised Reinforcement

I R

Task driven Data driven Learn from
(predict next value) (identify clusters) mistakes

rule of thumb: only use machine learning when traditional
programming methods are not effective/feasible for solving a
particular problem.




“People worry that computers
will get too smart and take over
the world—

but the real problem is that
they’re too stupid and they’ve
already taken over the world.”

& BrillianceAudio Unabridged

“PEDRD DOMINGAS DEMTYSTANES WACHINE LEARWING AXND SRIWS MIW NONIRDOS
AND EXCITING THE FOTIRE WiLL ALTER ISAACSIN

HOW THE QUEST FOR
THE ULTIMATE
LEARNING MACHINE WILL
REMAKE OUR WORLD




COMPLEXITY OF FAULTING

How to capture the
controlling physics
of such a complex

system?

Can new data
analyses
approaches help?

courtesy E. Brodsky




HOW DO EARTHQUAKES
EVOLVE?

Data driven approach

answers we seek hidden in existing
data




THE NOISE IS THE SIGNAL

Is there information regarding fault slip contained in the
sea of background seismic noise?
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SUPERVISED LEARNING APPROACH IN A NUTSHELL

SUPERVISED LEARNING INVOLVES A TRAINING PROCEDURE TO BUILD
TRI-EI[E;IQIIE%DSIIEI[}NTHEN VALIDATION AND TESTING, IN THE FORM OF A

feature space
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failure time

Machine
learning
algorithm
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ML PROCEDURE

(arb. units)

Acoustic data
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Rouet-LeDuc et al., Geophys. Res. Lett, 2018
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RESULT

f(x), ML model: RF/XG Boost
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The continuous signal contains a fingerprint of the instantaneous behavior of the
fault at all times

Rouet-LeDuc et al., Geophys. Res. Lett, 2018




STATISTICS
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Rouet-LeDuc et al., Geophys. Res. Lett, 2018




KAGGLE COMPETITION ON TOPIC OF LABORATORY EARTHQUAKE PREDICTION

@ Research Prediction Competition

LANL Earthquake Prediction | $50,000

Can you predict upcoming laboratory earthquakes? BuzeiMOioy

Los Alamos National Laboratary||- 4,516 teams - 3 years ago

Proceedings of the
National Academy of Sciences
of the United States of America Keyword, Author,

Articles Front Matter Podcasts Authors

PERSPECTIVE

Laboratory earthquake forecasting: A machine
learning competition

Paul A. Johnson, Bertrand Rouet-Leduc, Laura J. Pyrak-Nolte, & Gregory C. Beroza, Chris...
+ See all authors and affiliations

PNAS February 2, 2021 118 (5) e2011362118; https://doi.org/10.1073/pnas.2011362118

Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved November 28, 2020 (received for review
August 3, 2020)




Episodic slow slip and
tremor in Cascadia




Figure courtesy Gina Schmalzle

Megathrust
Earthquakes!

~ and Tremor

No?(t\ merican Plate

http://geodesygina.com/tag/cascadia-subduction-zone.html




TREMOR VICTORIA BRITISH COLUMBIA (CANADA)
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THE FAMOUS FIGURE

g Sufﬁuent data for tralnlng and testln

Slow sllp events
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ML DATA SETS AND MODELS FOR CASCADIA

Model input: continuous seismic data
Model output: continuous Global Positional Satellite (GPS) displacement rate
Models: XG Boost and and deep learning (autoencoder)
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CASCADIA: MODEL OUTPUT

020, testing result out sample MAE: 0.0398
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FORECASTING FAILURE TIME
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SEISMOGENIC EARTHQUAKES?

FDEM Simulation
Fully train CED

Iy —p V,=0.5mm/sec &
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Wang, C. Johnson, Bennet, PAJ Nature Communications, 2021




ENCODER-DECODER MODEL

Input Scalograms Output Scalograms
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(a) Convolutional Encoder-Decoder (CED)

Wang, C. Johnson, Bennet, PAJ Nature Communications, 2021




MODEL INPUT AND OUTPUT DATA SETS
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Wang, C. Johnson, Bennet, PAJ Nature Communications, 2021
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MODEL PREDICTIONS USING MODEL TRAINED ON SIMULATIONS

3MPa, MAPE = 1.960%

Model tested
on a different
laboratory
experiment,
conducted at 6
different
applied loads.
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CROSS TRAINING WITH GOAL OF DEVELOPING AN APPROACH FOR FAULTS IN EARTH

RETRAIN ONLY THE LATENT

Post-failure Pre-failure

42 44
Time [s]

Wang, C. Johnson, Bennet, PAJ Nature Communications, 2021




CROSS-TRAINED ENCODER-DECODER MODEL PREDICTIONS

(a) 3 MPa

Trained by pre-failure MAPE = 4.158%
045' g ) a . .
7 7

20.40- r ‘ |

0.35- 1§

Wang, C. Johnson, Bennet, PAJ Nature Communications, 2021




CROSS-TRAINED ENCODER-DECODER MODEL PREDICTIONS: TIME-TO-FAILURE

Wang, C. Johnson, Bennet, PAJ Nature Communications, 2021




NEXT STEPS

2-PRONGED APPROACH TO SEISMOGENIC FAULTS IN
EARTH

» Train on simulations of earth
faults and test on actual faults,
using seismic data as input and

surface displacement as target

> Use a frictional model in the
deep learning model with the
same input and target.

https://epod.usra.edu/blog/2006/11/elkho
rn-scarp-along-san-andreas-fault.html




TAKE HOME MESSAGE

THE "NOISE" IS THE
SIGNAL GIVING INSIGHT

IN TO FAULT PHYSICS.
ML TOOLS REVEAL IT.




