Al for Good

ITU AI for Good Discovery Climate Change and GeoAI Session 26 April 2022

Multi-sensor Fusion for Continuous Environmental Change Monitoring

Giovanni Marchisio, Planet Labs, PBC Annett Wania, Planet Labs Germany GmbH

- Multi-Sensor Fusion
 - > Taking a Pulse of the Planet Every Day
- Three AI Applications:
 - High Cadence Land Cover Mapping
 - Sustainable Agriculture
 - Dynamic Hydrology Maps

presents connectivity, integration and interoperability challenges.

and the second second

Credits: ESA

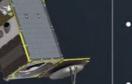
Planet Dove Satellite

- Always-on, broad-area monitoring
- 3 meter resolution
- RGB and NIR bands

Planet Dove Constellation

~98º Sun-Synchronous Orbit

Planet SkySat Satellite



- Custom, targeted monitoring
- 50 centimeter resolution
- RGB, NIR, and Pan bands

Planet SkySat Constellation

SkySats 1-15 ~98° Sun-Synchronous Orbit

> SkySats 16-21 ~53° Inclined Orbit

Next Generation Monitoring via Sensor Fusion

HLS (L8 and S2)

Analytic Ready OUTPUT

Houborg & McCabe, A Cubesat enabled Spatio-Temporal Enhancement Method (CESTEM) utilizing Planet, Landsat and MODIS data, 2018: https://doi.org/10.1016/j.rse.2018.02.067

+ Land Cover Mapping

- Used in many applications
- Key for measuring sustainability

O Land (use/cover) datasets essential					
Sustainable De	velopment Goal	s O Lan	nd (use/cover) datasets co	mplementary
<u>~</u>	1 NO POVERTY	2 ZERO HUNGER	3 GOOD HEALTH AND WELL-BEING	4 QUALITY EDUCATION	5 GENDER EQUALITY
TRANSFORMING OUR WORLD: THE 203 AGENDA FOR SUSTAINABLE DEVELOPMENT	Ň ¥╋₩ŧ₽		_√∕•		Ţ
6 CLEAN WATER AND SANITATION	7 AFFORDABLE AND CLEAN ENERGY	8 DECENT WORK AND ECONOMIC GROWTH	9 INDUSTRY, INNOVATING AND INFRASTRUCTURE	10 REDUCED INEQUALITIES	11 SUSTAINABLE CITIE AND COMMUNITIES
Q	- XA	Ĩ		(=)	A
12 RESPONSIBLE CONSUMPTION AND PRODUCTION	13 CLIMATE ACTION	14 LIFE BELOW WATER	15 LIFE ON LAND	16 PEACE JUSTICE AND STRONG INSTITUTIONS	17 PARTNERSHIPS FOR THE GOALS
60) Î			

- CORINE Land Cover = Europe's key dataset
 - Launched in 1985 (reference year 1990)
 - Update frequency 6 years
 - Labor intensive, involving many actors across Europe

The RapidAI4EO Project

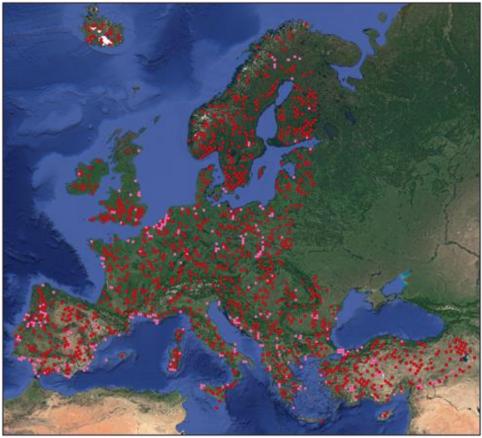
https://rapidai4eo.eu/

GOAL

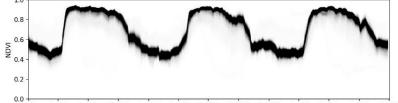
 Establish the foundations for the next generation of rapid cadence land monitoring applications leveraging advances in Deep Learning

STRATEGY

- Create the largest spatiotemporal ML training dataset for land monitoring applications:
 - Daily time series datacubes (2 full years: 2018-2019)
 - Sampled at 500,000 locations, accounting for
 - CORINE class distribution (44 land cover classes)
 - Spatial distribution & Country representation
 - Open sourcing in July 2022

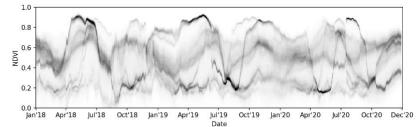


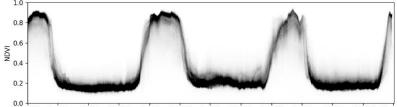
Examples of Stable Land Cover Behavior



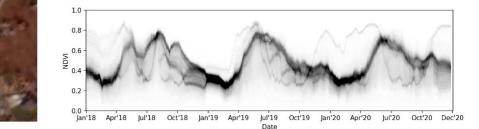
jan'18 Apr'18 Jul'18 Oct'18 Jan'19 Apr'19 Jul'19 Oct'19 Jan'20 Apr'20 Jul'20 Oct'20 Dec'20 Date

Examples of Change





Jan'18 Apr'18 Jul'18 Oct'18 Jan'19 Apr'19 Jul'19 Oct'19 Jan'20 Apr'20 Jul'20 Oct'20 Dec'20 Date



ML Models Learn to Recognize Land Cover Mixes

	Artificial surfaces:	0.36 0.56	Artificial surfaces:		Artificial surfaces: Agricultural areas:		Artificial surfaces: Agricultural areas:	
F1-Score (Micro)	Agricultural areas: Forest:	0.06	Agricultural areas: Forest:	0.37	Forest:	0.02	Forest:	0.99
80.89	Shrubs: Bare Areas:	0.00	Shrubs: Bare Areas:	0.50 0.01	Shrubs: Bare Areas:	0.00	Shrubs: Bare Areas:	0.00 0.00
92.82	Wetlands:	0.00	Wetlands:	0.00	Wetlands: Waterbodies:	0.00	Wetlands: Waterbodies:	0.00
	Waterbodies:	0.00	Waterbodies:	0.00	Waterboules.	0.00		
88.85								
61.94								
72.87								
69.01								

Class	Class Name	F1-Score (Micro)	
1	Artificial Surfaces	80.89	
2	Agriculture	92.82 w	
3	Forests	88.85	
4	Shrubs	61.94	
5	Bare Areas	72.87	
6	Wetlands	69.01	
7	Water bodies 83.68		

125

150 -

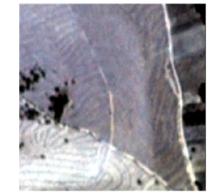
175

200

Convolutional Neural Network Activation Map

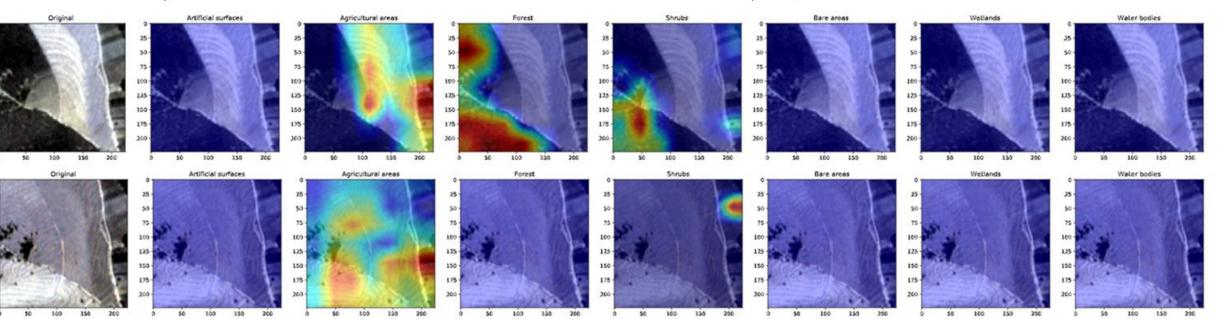
TILE-ID: 29N-26E-183N/33_17

Artificial surfaces:0.00Agricultural areas:0.45Forest:0.27Shrubs:0.25Bare Areas:0.00Wetlands:0.00Waterbodies:0.00

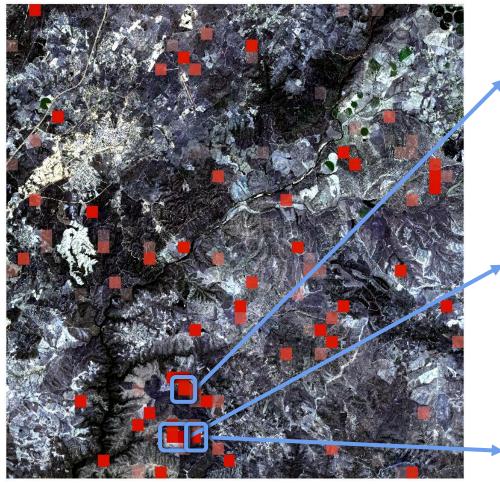


Artificial surfaces:	0.00
Agricultural areas:	0.97
Forest:	0.00
Shrubs:	0.01
Bare Areas:	0.00
Wetlands:	0.00
Waterbodies:	0.00

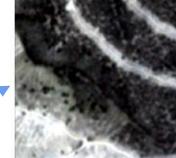
September, 2018



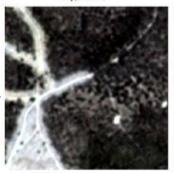
Detected Change (26E-183N)



July, 2018



July, 2018



0.00
: 0.02
0.91
0.05
0.00
0.00
0.00

Artificial surfaces: 0.00

Agricultural areas: 0.15

Artificial surfaces: 0.00

Agricultural areas: 0.02

Forest:

Shrubs:

Bare Areas:

Waterbodies:

Wetlands:

Forest:

Shrubs:

Bare Areas:

Wetlands:

Waterbodies:

0.10

0.72

0.01

0.00

0.00

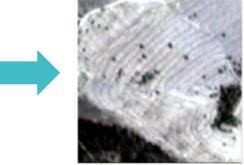
0.95

0.01

0.00

0.00

0.00



 Artificial surfaces:
 0.00

 Agricultural areas:
 0.74

 Forest:
 0.12

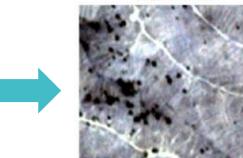
 Shrubs:
 0.11

 Bare Areas:
 0.00

 Wetlands:
 0.00

 Waterbodies:
 0.00

September, 2018



Artificial surfaces: 0.00 Agricultural areas: 0.97 Forest: 0.00 Shrubs: 0.01 Bare Areas: 0.00 Wetlands: 0.00 Waterbodies: 0.00

September, 2018

 Artificial surfaces:
 0.00

 Agricultural areas:
 0.99

 Forest:
 0.00

 Shrubs:
 0.00

 Bare Areas:
 0.00

 Wetlands:
 0.00

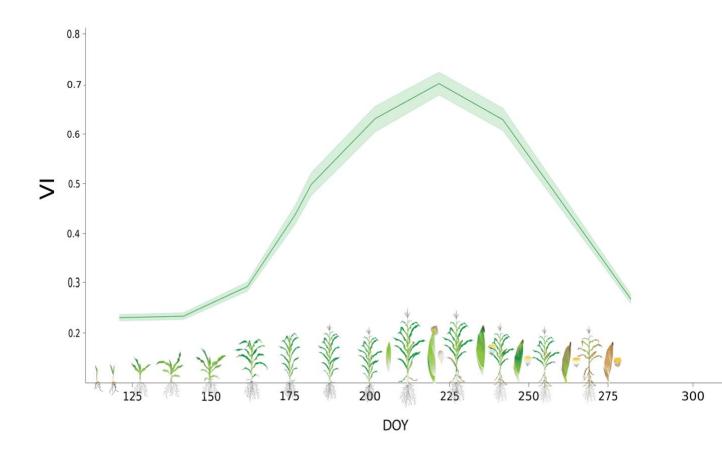
 Waterbodies:
 0.00

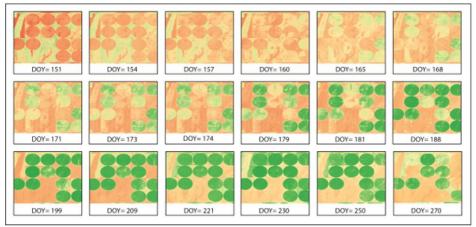
September, 2018

3rd Quarter, 2018

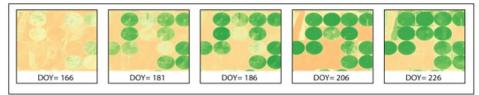
July, 2018

Sustainable Ag - Detection of Phenology Stages

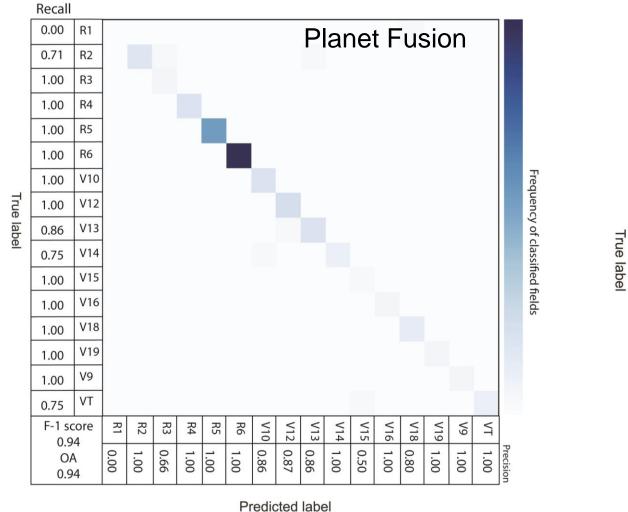


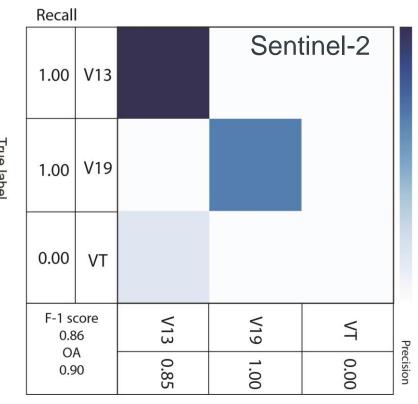


Example L3H, season 2017. 91 dates were present among the phenology datasets. From L3H dataset the same day was retrieve. The present figure only shows a few images to illustrate the differences present in the vegetation signal even during two consecutive days.



Example Sentinel 2, season 2017. Only 5 images were obtained matching the exact same day as the phenology measure.





Predicted label

p

KANSAS STATE College of Agriculture Department of Agronomy

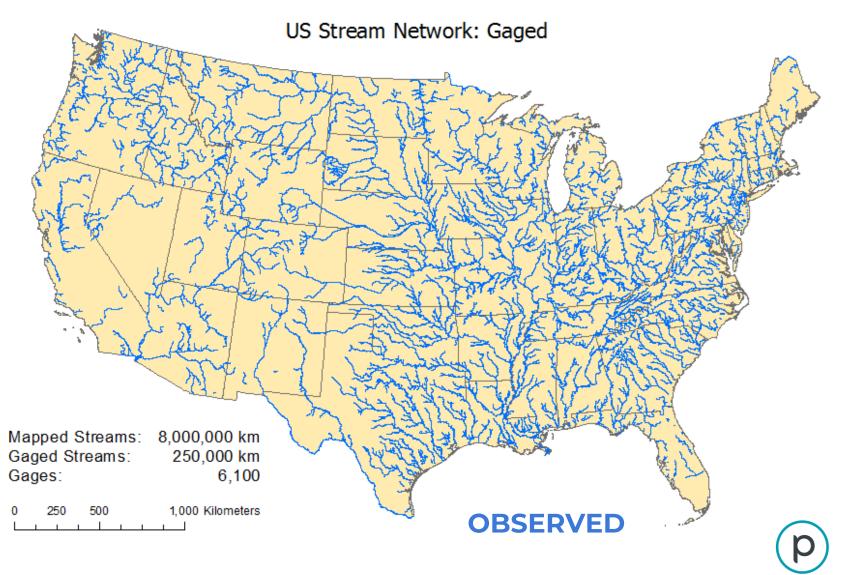
Ciampitti Lab

Otterworks: Dynamic Hydrology Maps

A complete map of our daily waters can give us an early warning for where droughts and floods are born.

Current satellite approaches are limited to monthly observations that map only the widest streams.

Garcia et al, "Pix2Streams: Dynamic Hydrology Maps from Satellite-LiDAR Fusion", 2021:<u>https://arxiv.org/abs/2011.07584</u>



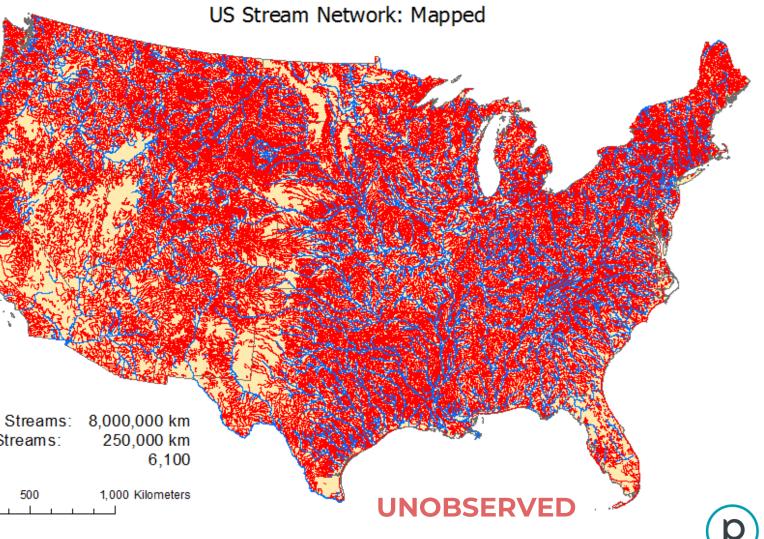
Otterworks: Dynamic Hydrology Maps

The wider streams are fed by smaller tributaries that make up much of the dendritic surface network but whose flow is unobserved.

Mapping them over time can give us a map of impermanence of our waters, showing where to expect water, and where not to.

Garcia et al, "Pix2Streams: Dynamic Hydrology Maps from Satellite-LiDAR Fusion", 2021:https://arxiv.org/abs/2011.07584

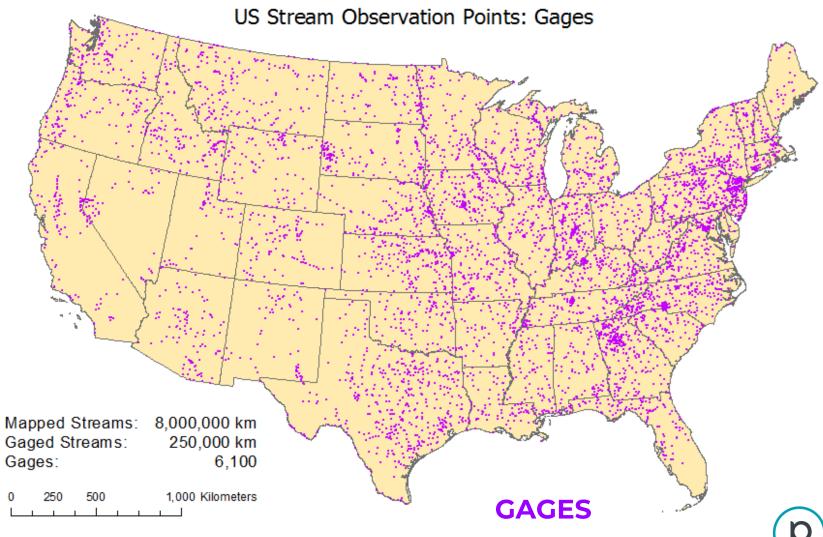
Mapped Streams: 8,000,000 km Gaged Streams: 250,000 km 6,100 Gages: 500 1.000 Kilometers



Otterworks: Dynamic Hydrology Maps

These measurements can be linked to 11,000 gage stations downstream and enable development of predictive models that leverage daily observations.

Garcia et al, "Pix2Streams: Dynamic Hydrology Maps from Satellite-LiDAR Fusion", 2021:https://arxiv.org/abs/2011.07584

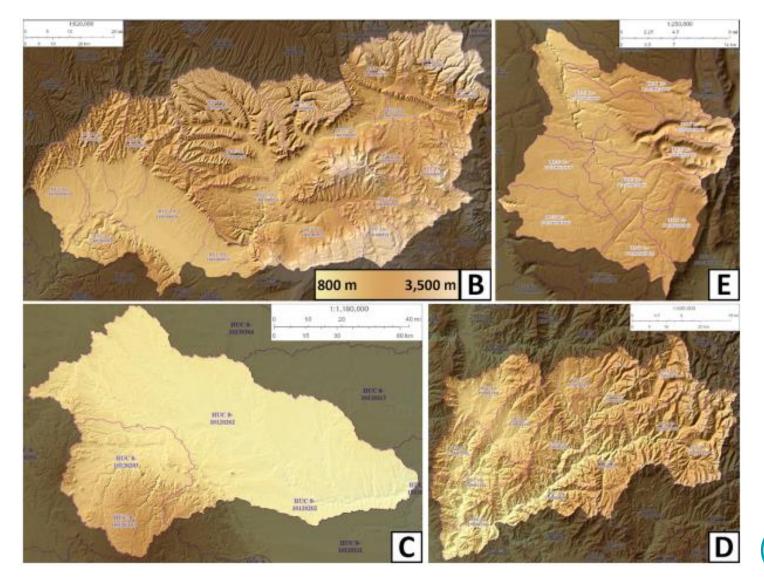


+ 4 Upper River Basins: 2 Year Daily Coverage

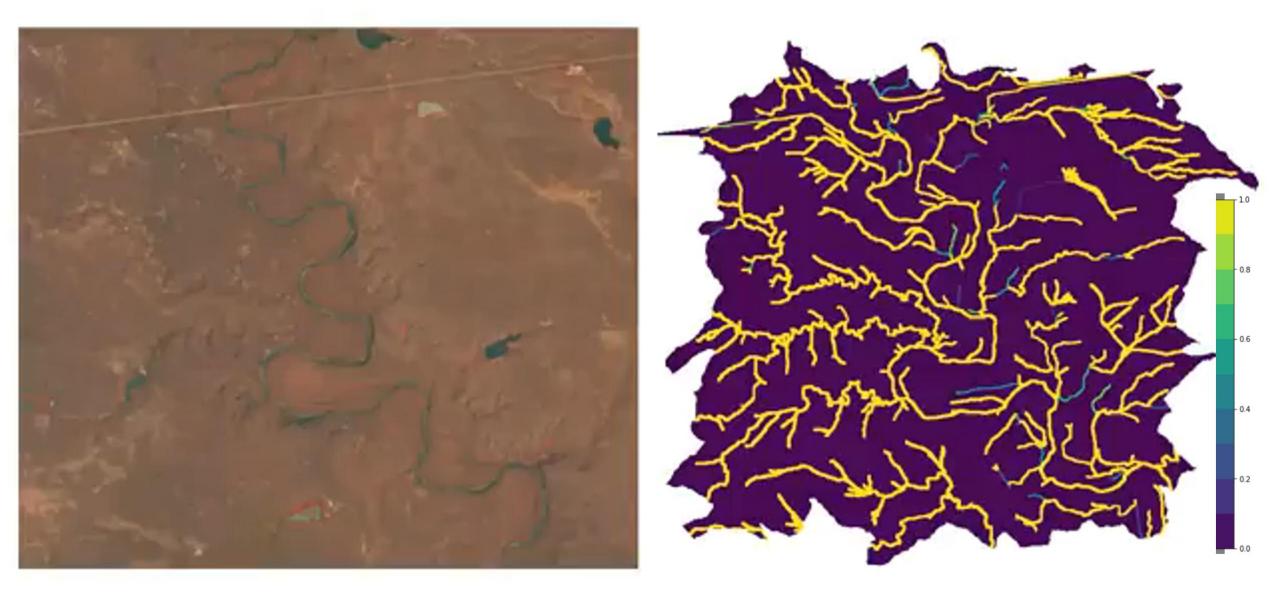
Using a Multi-headed Unet, the Otterworks team was able to categorize the temporal behavior of all tributaries and produce the first high-fidelity dynamic map of stream flow frequency.

Applied at the national scale, this could fundamentally improve how we manage our water resources around the world.

Garcia et al, "Pix2Streams: Dynamic Hydrology Maps from Satellite-LiDAR Fusion", 2021:<u>https://arxiv.org/abs/2011.07584</u>



2018-01-10



- Recent advances in Remote Sensing make it possible to take a pulse of our planet every day
- <u>Artificial Intelligence</u> + <u>the new daily EO data streams</u> can:
 - take us one step closer to measuring progress towards the SDGs
 - improve our understanding of land use and our food systems
 - help us predict, adapt to and mitigate the effects of climate change
 - and, more generally, help solve some of society's grand challenges with respect to sustainability: can we support growing populations and quality of life without exceeding the resource budget of the planet?
- And don't forget: the RapidAI4EO corpus is the largest spatiotemporal training corpus ever produced for remote sensing studies: ARD high cadence time series at 500,000 locations for 2018-2019. Open sourcing in July 2022!

p

planet.

THANK YOU! QUESTIONS?

Reach out to giovanni@planet.com, annett@planet.com

Kure Atoll, Hawaii, USA – May 12, 2016