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Facilitating adoption of AI in natural
disaster management through
collaboration
Monique M. Kuglitsch1✉, Ivanka Pelivan 1, Serena Ceola 2, Mythili Menon3 &

Elena Xoplaki 4

Artificial intelligence can enhance our ability to manage natural disasters.
However, understanding and addressing its limitations is required to realize its
benefits. Here, we argue that interdisciplinary, multistakeholder, and interna-
tional collaboration is needed for developing standards that facilitate its
implementation.

Acute events of natural origin (e.g., atmospheric, hydrologic, geophysical, oceanographic, or
biologic) can result in disruption and devastation to society, nature, and beyond1,2. Such events,
which disproportionately impact certain regions (e.g., least developed countries3) and popula-
tions (e.g., women and children4), are often referred to as natural disasters by experts in the
geoscience and disaster risk reduction communities, as reflected in the scientific literature and in
Sustainable Development Goals 11.5 and 13.1.

Recently, interest has grown in leveraging innovative technologies such as artificial intelligence
(AI) to bolster natural disaster management5. In many fields, such as medicine and finance, AI
has gained traction due to advances in algorithms, a growth in computational power, and the
availability of large data sets. Within natural disaster management, it is hoped that such tech-
nologies can also be a boon: capitalizing on a wealth of geospatial data to strengthen our
understanding of natural disasters, the timeliness of detections, the accuracy and lead times of
forecasts, and the effectiveness of emergency communications.

This Comment looks at successes and limitations of data collection methods and AI devel-
opment for natural disaster management. It then examines the challenges and solutions sur-
rounding AI implementation. It is shown that, although AI has the promise to enhance our
ability to manage natural disasters, its effective adoption depends on collaborative efforts to
address these challenges.

Successes and limitations to data
The foundation of any AI-based approach is high-quality data. A recent success is the emergence
of new (and novel use of traditional) data collection methods. For example, sensor networks now
help us to gather data from topographically complex regions, which are otherwise difficult to
monitor, at high spatiotemporal resolutions. Such networks have proven successful for flash
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flood6 and avalanche7 monitoring. Although satellite-derived
imagery has long been used for Earth observations, it is now being
used in innovative ways. Global luminescence (i.e., nightlights) is
being used by scientists to derive quantitative information about
flood exposure8 and, with AI, can improve probabilistic scenarios
of flood exposure. Through combining Global Navigation Satel-
lite System data with AI, scientists have been able to predict
tsunami amplitudes without characterizing the triggering
earthquake9; avoiding issues such as magnitude saturation, which
is common in seismic-based detection systems.

However, a number of limitations and/or technical issues must
be considered when curating data for AI-based algorithms. Some of
these relate to data quantity, such as: Are the data sufficient and
representative? How are they stored and shared? Other concerns
relate to data quality, such as: Do the data require calibration or
correction? Do they have the desired spatiotemporal resolution?
Are independent data available for testing the algorithm? When
using AI to detect extreme events such as avalanches or earth-
quakes, the availability of data can be a limiting factor. AI-based
methods can be very effective if a training dataset covers very large
events. However, the availability of such data is limited because of
the rarity of these events. One solution is producing synthetic data,
which are based on a physical understanding of these hazards.
Alternatively, it is possible to use machine learning algorithms
requiring as few as one training event10. Another approach is
applying transfer learning; a model is trained using data from a
certain site and fine-tuned for another site11. Sometimes sufficient
data are available, but there could be an issue with the spatio-
temporal resolution. For instance, flood researchers have detected
biases in numerical weather predictions (NWP) of precipitation in
Japan, which can be ascribed to the smooth topography that is
intrinsic in such algorithms. Rather than producing a higher-
resolution NWP (which is computationally costly), these experts
have turned to AI to correct these biases and produce a more
accurate flood prediction12.

Successes and limitations to AI development
If high-quality datasets are available, AI-based algorithms can be
used to detect or forecast events by combining multiple data
sources or modeling techniques. For instance, seismic source and
propagation modeling can be combined in a deep learning
algorithm to generate probabilistic forecasts of earthquake shak-
ing levels at a given location13. In another example, automatic
weather station and snowpack data can be coupled in a random
forest algorithm to forecast avalanche danger with human-level
accuracy14.

However, also at the modeling phase, there are limitations to
consider. For instance, is this the best model architecture given the
intended use of the algorithm? How should we evaluate the algo-
rithm and what level of explainability do we require? What are our
expectations for generalizability (e.g., is our algorithm transferable
to other regions where the availability of data might be limited)? In
the earthquake example, the AI-based algorithm was evaluated
using two earthquake sequences (in Italy and Japan) at different
shaking thresholds. It was shown that this algorithm outperformed
classical earthquake detection models for most of the shaking
thresholds13. In the aforementioned avalanche example, the AI-
based algorithm agreed with human forecasts in 80% of the cases.
Although a false alarm rate would have been desirable, it was not
possible to compute as the avalanche danger level is based on a
complex combination of many factors—including snowpack and
weather—and cannot be directly measured.

Answering such questions is nontrivial because of the diverse
ways that AI-based methods are employed to predict natural
disasters. These differences can, for example, be ascribed to the

hazard type, algorithm type, and overall objective of the algo-
rithm. There do, however, seem to be certain basic requirements
that should be met when training and testing an AI-based algo-
rithm. However, no clear guidelines or standards exist to support
researchers/developers and those evaluating or implementing the
end products (e.g., policy-makers/governments, individuals/con-
sumers, and humanitarian organizations).

Challenges and solutions to AI implementation
Once an AI-based algorithm has been shown to accurately detect
(e.g., in the avalanche example) or forecast (e.g., in the flood
example) natural disasters, how can we ensure that it will be
implemented to support natural disaster management? First,
we need to address the disconnect between people developing the
AI-based algorithms and people intended to implement them.

Often, these AI-based algorithms are developed by geoscience
or machine learning experts in an academic setting (university or
research institute) in order to advance the scientific under-
standing of a natural hazard. Throughout the lifetime of a
research project, from funding acquisition to dissemination of
outcomes, interaction with stakeholders and end users (including
governmental emergency management agencies and humanitar-
ian organizations) is often limited. For instance, once a project is
completed, the results are shared at scientific conferences, in
specialized committees, and in peer-reviewed publications, rarely
reaching the aforementioned stakeholders and end users. This
disconnect hinders the adoption of these AI-based algorithms.

Unfortunately, operating in a silo is not limited to geoscience
and machine learning experts in an academic setting. Non-
academic organizations dealing with DRR will also need an open-
mindedness to new technologies and interaction with other
experts (including the geoscience and machine learning experts in
an academic setting) and stakeholders to reap the benefits of
improved detection and forecasting for informed decision-
making.

An example of an effective cross-sectoral collaboration is the
Operation Risk Insights platform from IBM. This AI-based
platform, which has been implemented since 2019, was developed
by machine learning experts at IBM in close collaboration with
end users from humanitarian organizations. These partnerships,
which occurred at all stages of product development, streamlined
the adoption of the platform.

Several programs are already championing interdisciplinary,
multi-stakeholder, and international approaches. In the Resilient
America Program, future projects will explore how new sources
of data, for example, social media, can be combined with AI for
predictive analysis. The European Union’s CLINT project brings
together experts and stakeholders from nine countries and var-
ious sectors (national hydrometeorological services, agencies,
universities, non-governmental organizations, and industry) to
explore how AI can enhance climate services to support policy-
makers and the interplay between research and impact. The
African Union’s Africa Science and Technology Advisory Group
(Af-STAG) on DRR actively liaises with experts on the continent
and abroad to explore, for instance, how new data sources like
street-level imagery can be combined with AI to improve the
transmission of risk information to end users. Af-STAG-DRR has
also engaged with the International Telecommunication Union
(ITU), World Meteorological Organization (WMO), and UN
Environment Programme (UNEP) Focus Group on AI for Nat-
ural Disaster Management (FG-AI4NDM), which is laying the
groundwork for standards in the use of AI to support natural
disaster management. This Focus Group is unique within the
standardization landscape because of the diversity of its partici-
pants (including geoscientists, AI/ML specialists, DRR experts,
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governments, industry, and humanitarian organizations from
around the globe), which ensures that a multitude of perspectives
is considered.

Interdisciplinary collaboration for the future
As we have shown, novel data sources and AI-based methods
show great promise in improving the detection, forecasting, and
communication of natural disasters. However, their imple-
mentation is often hindered by limited interaction between
developers and implementers of AI-based solutions, and a lack of
clear guidelines for those developing, evaluating (or regulating),
and implementing these technologies.

To address the former, we advocate:

● expanding the participation in scientific conferences and
specialized committees to include experts from relevant
disciplines and non-academic stakeholders (including
humanitarian organizations and governments),

● predicating research funding on partnerships with end
users, and

● supporting national and international efforts to strengthen
these partnerships.

For the latter, we believe that expert-produced, stakeholder-
vetted, and internationally recognized standards can provide
assurances that innovative technologies are applied in an
informed manner with careful consideration of the limitations,
and can be invaluable for supporting capacity building.
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