

Prof. Nuria González Prelcic
with input from Dr. Joan Palacios

Department of Electrical and Computer Engineering North Carolina State University
http://www.6gnc.org

Motivation

Interesting use cases for $\mathbf{m m W}$ ave communications and positioning

Indoor positioning (factories, gaming, ...)

MmWave cellular for vehicular communication and positioning

Cellular network supporting UAVs

High accuracy positioning and communication at mmWave is a key technology for different use cases in indoor and outdoor scenarios

MmWave communication based positioning: use cases defined by 3GPP

Accurate positioning supporting AR/VR devices for gaming

Accurate positioning for emergency services

Accurate positioning for first responders
Person location in hospitals (psychiatry, geriatrics)

Passenger flow management in airports

Cellular/WiFi supported indoor
Accurate positioning to support traffic monitoring/management Accurate positioning to support automated vehicles
Accurate positioning supporting AR/VR devices (sports and leisure activities, ...) Accurate positioning to support UAV missions and operations
Accurate positioning for shared bikes Location based advertising push Patient location outside hospitals

High accuracy positioning based on communication at mmWave is a key technology for different use cases [1]

Accuracy and availability: potential requirements

Some key use cases need of very high accuracy and high availability

Positioning in 5G industrial use cases (IIOT)

Downlink and uplink based solutions possible [2]

5G Precise Indoor Positioning
Image from [1]
Horizontal positioning accuracy better than 3 meters (indoors) for 80% of the UEs

Vertical positioning accuracy better than 3 meters (indoors and outdoors) for 80% of the UEs

End-to-end latency less than I second.
Higher accuracies being defined for release 17, specially for IIOT use cases
[1] https://www.youtube.com/watch?v=pTdsAuwZPFI\&list=PLADNcabi-P9Z-ntSevtC AFWSxLpl-2af\&index=8
[2] 3GPP TR 38.855 V16.0.0, Technical Specification Group Radio Access Network; Study on NR positioning support (Release 16), March 2019

Overview of mmWave localization

Main idea

Measurements for localization: geometric intuition

-All methods assume LoS, asingle measurement per AP and the AP locations known.
-Alternative measurements like NLoS or measurements over time can be used to improve the location system.
-ADoA is AoA without orientation.
-TDoA is ToA without a synchronized timestamp
-ADoD is useless with only LoS
-There's no benefit on using TDoA+AoA

Measurement	Estimate
(AoA or AoD)	Location if $N_{\mathrm{AP}} \geq 2$ (triangulation), also Orientation if AoA or ADoA available
ToA	Location if $N_{\mathrm{AP}} \geq 3$ (trilateration)
ADoA	Location and Orientation if $N_{\mathrm{AP}} \geq 3$ (isoptical arcs)
TDoA	Location if $N_{\mathrm{AP}} \geq 4$ (hyperbolic intersection)
ToA + (AoA or AoD)	Location if $N_{\mathrm{AP}} \geq 1$ (direct calculation), also Orientation if AoA
ToA + ADoA	Location and Orientation if $N_{\mathrm{AP}} \geq 2$ (isoptical arc + circumferences)
TDoA + ADoA	Location and Orientation if $N_{\mathrm{AP}} \geq 2$ (isoptical arc + hyperbole)

Results obtained in3GPP

Baseline Channel Model based on common assumptions defined related to the channel models of 3GPP TRs 38.901 / 38.802 / 37.857.						
	Percentile	50	67	80	90	95
30 GHz	UL-TDOA, FR2, 400 MHz , Perfect Sync	0.4	0.7	1.5	4.2	9.5
120 KHz	UL-TDOA, FR2, 400 MHz , Realistic Sync	12.2	17.3	25.3	41	56
Interference from 4 UEs	UL-TDOA, FR2, 100 MHz , Perfect Sync	1.2	1.9	3	5.6	10.2
TOA estimation without oversampling with TOA pruning before the positioning engine using the ratio of the estimated TOA peak over the median of the Channel Energy Response (CER).	UL-TDOA, FR2, 100 MHz , Realistic Sync	12.3	17,5	25.3	41.1	56.8
	UL-TDOA+AoD, FR2, 400 MHz , Perfect Sync	0.3	0.4	1	2.5	6.5
	UL-TDOA+AoD, FR2, 400 MHz , Realistic Sync	10.5	15.8	23.4	36	47.7
For UL-TDOA Pick the best between Taylor series*, and Chan's Algorithm**.	UL-TDOA+AoD, FR2, 100 MHz , Perfect Sync	0.7	1	1.5	2.8	5.1
	UL-TDOA+AoD, FR2, 100 MHz , Realistic Sync	11.9	18	26.3	41.1	53.3
Perfect Sync and Realistic Sync with T1 = 50 nsec						
Kronecker product between vertical and horizontal weight vectors taken from DFT, with oversampling factor 2						

[^0]
Why mmWave positioning?

High carrier

 frequencies

More scatterers

Sparse channel, easier to relate to propagation environment

Large bandwidth provides better estimation accuracy and more paths are resolvable

00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 00000000000000 OOOOOOOOOOOOOO 00000000000000 00000000000000

Large $N_{R X}$ provides

 better AoA resolvabilityLarge N_{T} provides better AoD resolvability

Approaches and assumptions for mmWave localization

A ML

approach to mmWave localization

Positioning based Beamformed Fingerprints

Each propagation path provides a unique power attenuation and delay

> A collection of PDPs obtained with different transmit beampatterns provides position

Requires a single anchor

Proposed scheme and DNN

K dedicated CNNs to cover K subregions in the coverage area

CNN training is guided by a loss function based on MSE in position estimate

Simulation results

Images taken from [I]
Dataset using mmWave ray-tracing simulations in the New York University area is used, containing BFF data from |6080| different bidimensional positions

Parameter name	Value
Carrier frequency	28 GHz
Transmit power	45 dBm
Tx. antenna gain	24.5 dBi (horn antenna)
HPBW	10.9°
Transmitter downtilt	10°
Codebook size	$32\left(155^{\circ}\right.$ arc with 5° between entries $)$
Receiver grid size	$160801(400 \times 400 \mathrm{~m}, 1 \mathrm{~m}$ between Rx,
	1 m above the ground $)$
Samples per Tx. BF	$82(4.1 \mu \mathrm{~s} \mathrm{@} \mathrm{20} \mathrm{MHz)}$
Assumed Rx. Gain	$10 \mathrm{dBi}($ as in $[36])$
Detection threshold	-100 dBm
Added noise	$\sigma=[2,10] \mathrm{dB}$ (Log-Normal)

Estimation accuracy in the order of 3 m for sigma=2

A layered approach to mmWave localization

A layered approach to mmWave positioning

Tx location and orientation are known

Single bound reflections

Smart device position can be obtained from the distance to the BS and AoD/AoD information

Frequency-selective MIMO channel
N_{c} is the delay tap length

$$
\sum_{d=0}^{N_{\mathrm{c}}-1} p_{\mathrm{rc}}\left(d T_{s}-\tau_{\ell}\right) e^{-\mathrm{j} \frac{2 \pi k d}{K}}
$$

$$
\boldsymbol{H}[k]=\sqrt{\frac{N_{\mathrm{r}} N_{\mathrm{t}}}{L}} \sum_{\ell=1}^{L} \alpha_{\ell} \widehat{\beta_{k}, \mathbf{a}_{\mathrm{R}}}\left(\phi_{\ell}\right) \mathbf{a}_{\mathrm{T}}^{*}\left(\theta_{\ell}\right)
$$

Channel estimate provides gains, delays and AoA/AoD info

Delays depend on distance

Estimate MS position in the presence of unknown scatterers locations from channel estimate

Wideband channel model in the frequency domain

Frequency domain MIMO channel matrix in the $k t h$ subcarrier at time t_{n}

$$
\mathbf{H}^{(n)}[k]=\sum_{l=1}^{L} \sum_{r_{l}=1}^{R} \alpha_{l, r_{l}}^{(n)} \exp
$$

\# of clusters
\# of rays

Delay for r_{1}
TX and RX array ray in l cluster

Incorporates effect of channel gains and pulse shaping and analog filtering evaluated at the delays of each cluster

$$
\mathbf{H}[k]=\mathbf{A}_{\mathbf{R}}\left(\boldsymbol{\phi}^{(n)}\right) \mathbf{G}^{(n)}[k] \mathbf{A}_{\mathrm{T}}^{*}\left(\boldsymbol{\theta}^{(n)}\right)
$$

For a wideband model there is a sparse virtual matrix for every subcarrier [I]

Common support between subcarriers can be exploited [2] to estimate the channel
[1] P- Schniter and A. Sayeed, "Channel estimation and precoder design for millimter wave communication:s: the sparse way", Asilomar 2014
[2] Javier Rodríguez-Fernández, Nuria González-Prelcic, Kiran Venugopal, and Robert W. Heath Jr., "Frequency-domain Compressive Channel Estimation for Wideband Hybrid Millimeter Wave Systems", IEEE Trans. On Wireless Communications, 2018,.

Conversion from channel parameters to position and orientation

LOS case

Equations taken from [1]

Single path, line-of-sight
Delay for LOS path

$$
\begin{aligned}
& \hat{\mathbf{p}}=\mathbf{q}+c \hat{\tau}_{0}\left[\cos \left(\hat{\theta}_{\mathrm{Tx}, 0}\right), \sin \left(\hat{\theta}_{\mathrm{Tx}, 0}\right)\right]^{\mathrm{T}} \\
& \hat{\alpha}=\pi+\hat{\theta}_{\mathrm{Tx}, 0}-\hat{\theta}_{\mathrm{Rx}, 0} \quad \text { AoA for LOS } \\
& \text { path }
\end{aligned}
$$

For the LOS case, there is a simple mapping between position and channel parameters

Conversion from channel parameters to position/orientation

NLOS case

\hat{K} scatterers and a line-of-sight path

BS

- Initial estimation of \mathbf{p} and α from LOS path
- For the first order reflection estimate the
position of the scatterer $\hat{\mathbf{s}}_{k}$, at the intersection of the lines:

$$
\begin{aligned}
& \tan \left(\pi-\left(\hat{\theta}_{\mathrm{Rx}, k}+\hat{\alpha}\right)\right)=\left(\hat{p}_{y}-s_{1, y}\right) /\left(\hat{p}_{x}-s_{1, x}\right) \\
& \tan \left(\hat{\theta}_{\mathrm{Tx}, k}\right)=\left(s_{1, y}-q_{y}\right) /\left(s_{1, x}-q_{x}\right) .
\end{aligned}
$$

- Consider the geometric relationships between $\hat{\mathbf{s}}_{k}$ and the estimated channel parameters

$$
\begin{aligned}
& \tau_{k}=\left\|\mathbf{q}-\mathbf{s}_{k}\right\|_{2} / c+\left\|\mathbf{p}-\mathbf{s}_{k}\right\|_{2} / c, \quad k>0 \\
& \theta_{\mathrm{Tx}, k}=\arccos \left(\left(s_{k, x}-q_{x}\right) /\left\|\mathbf{s}_{k}-\mathbf{q}\right\|_{2}\right), \quad k>0 \\
& \theta_{\mathrm{Rx}, k}=\pi-\arccos \left(\left(p_{x}-s_{k, x}\right) /\left\|\mathbf{p}-\mathbf{s}_{k}\right\|_{2}\right)-\alpha, \quad k>0
\end{aligned}
$$

Position of the kth-scatterer Orientation of the device Position of the device

Channel parameters
LOS component

Initial estimation of \mathbf{p} and α	
	AoA/AoD first reflection

When only a first order reflection is considered, there is a unique relationship between the channel parameters and position/orientation
Refine estimation

Conversion from channel parameters to position/orientation

NLOS case

\hat{K} scatterers and a line-of-sight path

How to find $\hat{\mathbf{p}}$ and $\hat{\alpha}$ that better fits the measurements from all the \hat{K} scatterers?

Formulate and solve an optimization problem

$$
\widetilde{\boldsymbol{\eta}}=\left(\begin{array}{c}
\hat{\mathbf{p}}_{\hat{\mathbf{p}}} \\
\hat{\mathbf{\alpha}}_{\mathbf{\alpha}} \\
\hat{\mathbf{s}}_{\mathbf{1}} \\
\hat{\mathbf{s}}_{\mathbf{2}}
\end{array}\right)=\underset{\widetilde{\eta}}{\operatorname{argmin}} \sum\left|\binom{\hat{\boldsymbol{\theta}}_{k}}{\hat{\tau}_{k}}-f\binom{\mathbf{p}}{s_{\mathrm{k}}}\right|^{2}
$$

If there is prior knowledge about the statistics of the channel parameters and/or the received signal, it could also be exploited using a different cost function

Summary of this approach

- Non band-limited channel
- Fully digital architecture at the RX (65 antennas at the device)
- High complexity
- Evaluation with an indoor localization, only short distance (4m), static channel

Results in an indoor scenario

Maximum distance between BS and device of $4 \mathrm{~m}, \mathrm{~B}=100 \mathrm{MHz}, \mathrm{f}_{\mathrm{c}}=60 \mathrm{GHz}, \mathrm{N}=20$ subcarriers, $\mathrm{N}_{\mathrm{t}}=65$ antennas, $\mathrm{N}_{\mathrm{r}}=65$ antennas, up to 3 scatterers

For $\mathrm{SNR}=0 \mathrm{~dB}$, position estimation error in the order of 5 cm for LOS and Icm for NLOS

The challenge

A realistic mmWave MIMO architecture

We consider a hybrid mmWave MIMO architecture operating at mmWave to reduce power consumption

Position and orientation has to be estimated from the received signal in a multidevice case

The data set

Access points on the ceiling:

Ray tracing set up (Wireless Insite) already developed to generate a data base of channel realization and associated P/O of devices in an emulated factory environment
$\mathrm{fc}=60 \mathrm{GHz}$, Bandwidth $=1 \mathrm{GHz}$
Test: we will provide a set of received signals and corresponding precoders and combiners

Our preliminary results

$$
N t=16, N r=64, R F \text { chains: } L_{r f}=L_{r f}=2
$$

[1] W. Zheng and N. González-Prelcic, "Joint Position, Orientation AND Channel Estimation in Hybrid mmWave MIMO Systems," 2019 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 2019, pp. 1453-1458.
[2] W. Zheng and N. Gonzalez Prelcic, "Multidevice mmWave localization in a factory environment: a hybrid data and model driven approach", under preparation, 2021.

Thanks!

http://www.6gnc.org ngprelcic@ncsu.edu

[^0]: ${ }^{*}$ Chan's Algorithm according to: Y. T. Chan, K. C. Ho, " A Simple and Efficient Estimator for Hyperbolic Location", IEEE Transactions on Signal Processing, vol. 42, pp. 1905-1915, Aug. 1994.

 Vol23, issue 1, 2016 Equal weight is used in the TOA covariance matrix

