

Multidevice Localization with mmWave Signals in Factory Environments

6GN(

Prof. Nuria González Prelcic with input from Dr. Joan Palacios

Department of Electrical and Computer Engineering North Carolina State University

http://www.6gnc.org

Motivation

High accuracy positioning and communication at mmWave is a key technology for different use cases in indoor and outdoor scenarios

© 2021 Nuria González Prelcic. Reproduction in any form prohibited without prior approval. **MmWave communication based positioning: use cases** defined by 3GPP

Accurate positioning supporting AR/VR devices for gaming

Accurate positioning for emergency services

Accurate positioning for first responders

Person location in hospitals (psychiatry, geriatrics)

Passenger flow management in airports

Cellular/WiFi supported indoor

<u>Accurate</u> positioning to support traffic monitoring/management Accurate positioning to support automated vehicles <u>Accurate</u> positioning supporting AR/VR devices (sports and leisure activities, ...)

Accurate positioning to support UAV b missions and operations

- Accurate positioning for shared bikes 65
 - Location based advertising push

Patient location outside hospitals

Cellular supported outdoor

High accuracy positioning based on communication at mmWave is a key technology for different use cases [1]

Accuracy and availability: potential requirements

Some key use cases need of very high accuracy and high availability

[1] 3GPP TR 22.872 V16.0.0, Technical Specification Group Services and System Aspects; Study on positioning use cases; Stage 1 (Release 16), June 2018

Positioning in 5G industrial use cases (IIOT)

Downlink and uplink based solutions possible [2]

5G Precise Indoor Positioning

Image from [1]

Horizontal positioning accuracy better than 3 meters (indoors) for 80% of the UEs

Vertical positioning accuracy better than 3 meters (indoors and outdoors) for 80% of the UEs

End-to-end latency less than I second.

Higher accuracies being defined for release 17, specially for IIOT use cases

[1] <u>https://www.youtube.com/watch?v=pTdsAuwZPFI&list=PLADNcabi-P9Z-ntSevtC_AFWSxLpI-2af&index=8</u>

[2] 3GPP TR 38.855 V16.0.0, Technical Specification Group Radio Access Network; Study on NR positioning support (Release 16), March 2019

Overview of mmWave localization

Main idea

© 2021 Nuria González Prelcic. Reproduction in any form prohibited without prior approval.

Measurements for localization: geometric intuition

-All methods assume LoS, asingle measurement per AP and the AP locations known.

-Alternative measurements like NLoS or measurements over time can be

used to improve the location system.

-ADoA is AoA without orientation.

- -TDoA is ToA without a synchronized timestamp
- -ADoD is useless with only LoS
- -There's no benefit on using TDoA+AoA

Measurement	Estimate
(AoA or AoD)	Location if $N_{\rm AP} \ge 2$ (triangulation), also Orientation if AoA or ADoA available
ТоА	Location if $N_{\rm AP} \ge 3$ (trilateration)
ADoA	Location and Orientation if $N_{\rm AP} \ge 3$ (isoptical arcs)
TDoA	Location if $N_{\rm AP} \ge 4$ (hyperbolic intersection)
ToA + (AoA or AoD)	Location if $N_{\rm AP} \ge 1$ (direct calculation), also Orientation if AoA
ToA + ADoA	Location and Orientation if $N_{\rm AP} \ge 2$ (isoptical arc + circumferences)
TDoA + ADoA	Location and Orientation if $N_{\rm AP} \ge 2$ (isoptical arc + hyperbole)

Results obtained in3GPP

Baseline Channel Model based on common						
assumptions defined related to the channel						
models of 3GPP TRs 38.901 / 38.802 / 37.857.	Percentile	50	67	80	90	95
30 GHz	UL-TDOA, FR2, 400 MHz, Perfect Sync	0.4	0.7	1.5	4.2	9.5
120 KHz	UL-TDOA, FR2, 400 MHz, Realistic Sync	12.2	17.3	25.3	41	56
Interference from 4 UFs	UL-TDOA, FR2, 100 MHz, Perfect Sync	1.2	1.9	3	5.6	10.2
TOA estimation without oversampling with	UL-TDOA, FR2, 100 MHz, Realistic Sync	12.3	17,5	25.3	41.1	56.8
TOA estimation without oversampling with	UL-TDOA+AoD, FR2, 400 MHz, Perfect	0.3	0.4	1	2.5	6.5
using the ratio of the estimated TOA peak over	Sync					
the medice of the Chennel Freeze Despense	UL-TDOA+AoD. FR2. 400 MHz. Realistic	10.5	15.8	23.4	36	47.7
the median of the Channel Energy Response	Sync					
(CER).	UI-TDOA+AoD, FR2, 100 MHz, Perfect	0.7	1	1.5	2.8	5.1
	Sync		_			
For UL-TDOA Pick the best between Taylor	JUL TDOA+AOD ER2 100 MHz Poplistic	11 0	18	26.3	/11 1	52.3
series*, and Chan's Algorithm**.		11.5	10	20.5	41.1	55.5
	Sync					
Perfect Sync and Realistic Sync with T1 = 50						
nsec						
Kronecker product between vertical and						
horizontal weight vectors taken from DFT, with						
oversampling factor 2						

*Chan's Algorithm according to: Y. T. Chan, K. C. Ho, " A Simple and Efficient Estimator for Hyperbolic Location", IEEE Transactions on Signal Processing, vol. 42, pp. 1905-1915, Aug. 1994. **Taylor Series Algorithm: W. H. Foy, " Position-Location Solutions by Taylor-Series Estimation", IEEE Transactions on Aerospace and Electronic Systems, vol. AES-12, pp. 187-194, March 1976. ***For UL-TDOA+AOA, the algorithm presented in the following paper is used: Chunhua Yang, Yi Huang and Xu Zhu, 'HYBRID TDOA/AOA METHOD FOR INDOOR POSITIONING SYSTEMS', IEEE Sig. Proc. Letters, Vol23, issue 1, 2016 Equal weight is used in the TOA covariance matrix

[1] 3GPP TR 38.855 V16.0.0, Technical Specification Group Radio Access Network; Study on NR positioning support (Release 16), March 2019

Why mmWave positioning?

© 2021 Nuria González Prelcic. Reproduction in any form prohibited without prior approval.

Approaches and assumptions for mmWave localization

A ML approach to mmWave localization

Positioning based Beamformed Fingerprints

[1] J. Gante, G. Falcão, L. Sousa, "Deep Learning Architectures for Accurate Millimeter Wave Positioning in 5G", Neural Processing Letters (2020) 51:487–514

Proposed scheme and DNN

[1] J. Gante, G. Falcão, L. Sousa, "Deep Learning Architectures for Accurate Millimeter Wave Positioning in 5G", Neural Processing Letters (2020) 51:487–514

Simulation results

Images taken from [1]

Dataset using mmWave ray-tracing simulations in the New York University area is used, containing BFF data from 160801 different bidimensional positions

Parameter name	Value			
Carrier frequency	28 GHz			
Transmit power	45 dBm			
Tx. antenna gain	24.5 dBi (horn antenna)			
HPBW	10.9°			
Transmitter downtilt	10°			
Codebook size	$32 (155^{\circ} \text{ arc with } 5^{\circ} \text{ between entries})$			
Receiver grid size	$160801 (400 \times 400 \text{ m}, 1 \text{ m} \text{ between } \text{Rx},$			
	1 m above the ground)			
Samples per Tx. BF	82 (4.1 µs @ 20 MHz)			
Assumed Rx. Gain	10 dBi (as in [36])			
Detection threshold	-100 dBm			
Added noise	$\sigma = [2, 10] \text{ dB} (\text{Log-Normal})$			

Estimation accuracy in the order of 3 m for sigma=2

[1] J. Gante, G. Falcão, L. Sousa, "Deep Learning Architectures for Accurate Millimeter Wave Positioning in 5G", Neural Processing Letters (2020) 51:487–514

A layered approach to mmWave localization

Wideband channel model in the frequency domain

Frequency domain MIMO channel matrix in the kthsubcarrier at time t_n

$$\mathbf{H}^{(n)}[k] = \sum_{l=1}^{L} \sum_{r_l=1}^{R} \alpha_{l,r_l}^{(n)} \exp$$

Incorporates effect of channel gains and pulse shaping and analog filtering evaluated at the delays of each cluster

$$\mathbf{H}[k] = \mathbf{A}_{\mathbf{R}}\left(\boldsymbol{\phi}^{(n)}\right) \mathbf{G}^{(n)}[k] \mathbf{A}_{\mathbf{T}}^{*}\left(\boldsymbol{\theta}^{(n)}\right)$$

For a wideband model there is a sparse virtual matrix for every subcarrier [1]

256 subcarriers, 500 MHz bandwidth Subcarrier I Subcarrier 128

 P- Schniter and A. Sayeed, "Channel estimation and precoder design for millimter wave communication:s: the sparse way", Asilomar 2014
Javier Rodríguez-Fernández, Nuria González-Prelcic, Kiran Venugopal, and Robert W. Heath Jr., "Frequency-domain Compressive Channel Estimation for Wideband Hybrid Millimeter Wave Systems", IEEE Trans. On Wireless Communications, 2018,.

Conversion from channel parameters to position and orientation

[1] A. Shahmansoori et al., "Position and Orientation Estimation through Millimeter Wave MIMO in 5G Systems," IEEE Trans. Wireless Commun., March 2018.

Conversion from channel parameters to position/orientation

Conversion from channel parameters to position/orientation

[1] A. Shahmansoori et al., "Position and Orientation Estimation through Millimeter Wave MIMO in 5G Systems," IEEE Trans. Wireless Commun., March 2018.

Summary of this approach

- Non band-limited channel
- Fully digital architecture at the RX (65 antennas at the device)
- High complexity
- Evaluation with an indoor localization, only short distance (4m), static channel

[1] A. Shahmansoori et al., "Position and Orientation Estimation through Millimeter Wave MIMO in 5G Systems," IEEE Trans. Wireless Commun., March 2018.

Results in an indoor scenario

Maximum distance between BS and device of 4 m, B=100 MHz, f_c =60 GHz, N=20 subcarriers, N_t=65 antennas, N_r=65 antennas, up to 3 scatterers

For SNR=0 dB, position estimation error in the order of 5 cm for LOS and 1 cm for NLOS

The challenge

A realistic mmWave MIMO architecture

We consider a hybrid mmWave MIMO architecture operating at mmWave to reduce power consumption

Position and orientation has to be estimated from the received signal in a multidevice case

The data set

Access points on the ceiling: 6 x 3 grid (20 m spacing), 4 x 2 grid (30m spacing)

Room Size: 120 m x 60 m x 10 m 6 Windows (glass), 2 Doors Objects: 7 boxes made of metal, 6 boxes made of wood, with sizes around 2m x 2m x2m

Ray tracing set up (Wireless Insite) already developed to generate a data base of channel realization and associated P/O of devices in an emulated factory environment

fc=60GHz, Bandwidth= 1GHz

Test: we will provide a set of received signals and corresponding precoders and combiners

Our preliminary results

Nt=16, Nr=64, RF chains: L_{rf}=L_{rf}=2

[1] W. Zheng and N. González-Prelcic, "Joint Position, Orientation AND Channel Estimation in Hybrid mmWave MIMO Systems," 2019 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 2019, pp. 1453-1458.

[2] W. Zheng and N. Gonzalez Prelcic, "Multidevice mmWave localization in a factory environment: a hybrid data and model driven approach", under preparation, 2021.

Thanks!

http://www.6gnc.org ngprelcic@ncsu.edu

