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Motivation
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Interesting use cases for mmWave communications and 
positioning

Indoor positioning 
(factories, gaming, …)

High accuracy positioning and communication at mmWave is a key
technology for different use cases in indoor and outdoor scenarios

Cellular network 
supporting UAVsMmWave cellular 

for vehicular 
communication and 

positioning
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MmWave communication based positioning: use cases 
defined by 3GPP

Accurate positioning supporting 
AR/VR devices for gaming

Passenger flow management in 
airports

Person location in hospitals 
(psychiatry, geriatrics)

Accurate positioning for emergency 
services 

Accurate positioning for first responders 

[1] 3GPP TR 22.872 V16.0.0, Technical Specification Group Services and System Aspects; Study on positioning use cases; Stage 1 (Release 16), June 2018

High accuracy positioning based on communication at mmWave is a key technology
for different use cases [1]

Cellular/WiFi supported indoor

Accurate positioning for shared bikes

Accurate positioning supporting AR/VR 
devices (sports and leisure activities, …)

Location based advertising push
Patient location outside hospitals

Accurate positioning to support UAV 
missions and operations

Accurate positioning to support 
traffic monitoring/management
Accurate positioning to support 
automated vehicles

?

Cellular supported outdoor
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Accuracy and availability: potential requirements

Some key use cases need of very high accuracy and high availability 

[1] 3GPP TR 22.872 V16.0.0, Technical Specification Group Services and System Aspects; Study on positioning use cases; Stage 1 (Release 16), June 2018 

Figure taken from [1]

UAV control and 
data analysis

Traffic Monitoring, 
Management and Control
Bike sharing
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Positioning in 5G industrial use cases (IIOT)

Horizontal positioning accuracy better than 3 
meters (indoors) for 80% of the UEs

Vertical positioning accuracy better than 3 
meters (indoors and outdoors) for 80% of the 
UEs

End-to-end latency less than 1 second.

Higher accuracies being defined for release 17, specially for IIOT use cases

Downlink and uplink based 
solutions possible [2]

[1] https://www.youtube.com/watch?v=pTdsAuwZPFI&list=PLADNcabi-P9Z-ntSevtC_AFWSxLpI-2af&index=8
[2] 3GPP TR 38.855 V16.0.0, Technical Specification Group Radio Access Network; Study on NR positioning support (Release 16), March 2019 

Image from [1]

https://www.youtube.com/watch?v=pTdsAuwZPFI&list=PLADNcabi-P9Z-ntSevtC_AFWSxLpI-2af&index=8
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Overview of 
mmWave
localization
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Main idea

Blue: Comm paths

The received waveform contains 
information about the geometry of 

the propagation environment

Communication
arrays

How can we determine the UE position and 
orientation? Why mmWave waveform?
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Measurements for localization: geometric intuition

Measurement Estimate

(AoA or AoD) Location if !"# ≥ 2 (triangulation), also Orientation if AoA or ADoA available

ToA Location if !"# ≥ 3 (trilateration)

ADoA Location and Orientation if !"# ≥ 3 (isoptical arcs)

TDoA Location if !"# ≥ 4 (hyperbolic intersection)

ToA + (AoA or AoD) Location if !"# ≥ 1 (direct calculation), also Orientation if AoA

ToA + ADoA Location and Orientation if !"# ≥ 2 (isoptical arc + circumferences)

TDoA + ADoA Location and Orientation if !"# ≥ 2 (isoptical arc + hyperbole)

-All methods assume LoS, asingle measurement per AP and the AP 
locations known.
-Alternative measurements like NLoS or measurements over time can be 
used to improve the location system.
-ADoA is AoA without orientation.
-TDoA is ToA without a synchronized timestamp
-ADoD is useless with only LoS
-There’s no benefit on using TDoA+AoA

Time of Arrival (TOA) 

Distance to BS

AOD

Direction from BS
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Results obtained in3GPP

Percentile 50 67 80 90 95
UL-TDOA, FR2, 400 MHz, Perfect Sync 0.4 0.7 1.5 4.2 9.5

UL-TDOA, FR2, 400 MHz, Realistic Sync 12.2 17.3 25.3 41 56

UL-TDOA, FR2, 100 MHz, Perfect Sync 1.2 1.9 3 5.6 10.2

UL-TDOA, FR2, 100 MHz, Realistic Sync 12.3 17,5 25.3 41.1 56.8

UL-TDOA+AoD, FR2, 400 MHz, Perfect 
Sync

0.3 0.4 1 2.5 6.5

UL-TDOA+AoD, FR2, 400 MHz, Realistic 
Sync

10.5 15.8 23.4 36 47.7

UL-TDOA+AoD, FR2, 100 MHz, Perfect 
Sync

0.7 1 1.5 2.8 5.1

UL-TDOA+AoD, FR2, 100 MHz, Realistic 
Sync

11.9 18 26.3 41.1 53.3

Baseline Channel Model based on common 
assumptions defined related to the channel 

models of 3GPP TRs 38.901 / 38.802 / 37.857.
30 GHz
120 KHz

Interference from 4 UEs
TOA estimation without oversampling with 
TOA pruning before the positioning engine 

using the ratio of the estimated TOA peak over 
the median of the Channel Energy Response 

(CER). 

For UL-TDOA Pick the best between Taylor 
series*, and Chan's Algorithm**. 

Perfect Sync and Realistic Sync with T1 = 50 
nsec

Kronecker product between vertical and 
horizontal weight vectors taken from DFT, with 

oversampling factor 2

[1] 3GPP TR 38.855 V16.0.0, Technical Specification Group Radio Access Network; Study on NR positioning support (Release 16), March 2019 

*Chan's Algorithm according to: Y. T. Chan, K. C. Ho, " A Simple and Efficient Estimator for Hyperbolic Location", IEEE Transactions on Signal Processing, vol. 42, pp. 1905-1915, Aug. 1994. 
**Taylor Series Algorithm: W. H. Foy, " Position-Location Solutions by Taylor-Series Estimation", IEEE Transactions on Aerospace and Electronic Systems, vol. AES-12, pp. 187-194, March 1976.
***For UL-TDOA+AoA, the algorithm presented in the following paper is used: Chunhua Yang, Yi Huang and Xu Zhu, 'HYBRID TDOA/AOA METHOD FOR INDOOR POSITIONING SYSTEMS', IEEE Sig. Proc. Letters, 
Vol23, issue 1, 2016 Equal weight is used in the TOA covariance matrix
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Why mmWave positioning?

High carrier 
frequencies

Large 
bandwidth

Large 
arrays

Scattering

Diffraction
not significant

Direct
path  blocked

More scatterers
but fewer pathsPenetration loss

TX RX

Sparse channel, easier to 
relate to propagation 

environment

|t1-t2|B>>1

Large bandwidth 
provides better 

estimation accuracy 
and more paths are 

resolvable 

Large NRX provides 
better AoA resolvability

IEEE Communications Magazine • September 2014 67

The conformal topology further maximizes the
range of the beamsteering scanning angles in the
azimuth plane. Moreover, the slanted topology
conforms to the cellular device and enables the
designed mmWave antenna array to appear as
an extremely low profile metallic trace line that
encompasses the edges of the PCB. The width of
the trace lines is less than 0.2 mm, which is even
less than the 1 mm spacing required from the
PCB edges for conventional surface mount tech-
nologies (SMTs). From the vantage point of the
hardware layout, the inclusion of a total of 32
mmWave antenna elements requires a negligible
antenna footprint. Based on this antenna solu-
tion, a truly massive MIMO antenna system may
actually be realizable for mmWave 5G in the
long term.

The beam patterns of each set of phased
array antennas are synthesized by the 28 GHz
RF unit, composed of 32 6-bit phase shifters,
power amplifiers, and low noise amplifiers for
the transmit and receive paths, respectfully.
The phases of the 28 GHz RF signal are indi-
vidually controlled to form a beam in the
intended direction along the azimuth plane.
Each mesh grid antenna element within the two
sets of antenna arrays is connected with the 28
GHz RF unit through K type coaxial connec-
tors. The required RF signal phase information
required to steer the main lobe beam are stored
and retrieved from the in-house designed base-
band modem.

The modem analog front-end (AFE) is con-
nected to the RF port of the RF unit to trans-
mit and receive the complex analog baseband
signal. The analog beamforming algorithm used
in this work is designed to search for and identi-
fy the strongest transmit and receive beam
direction within 45 ms. The current size of the
RF unit and baseband modem prohibits full
implementation inside the cellular phone proto-
type in this research. We are exploring a num-
ber of different approaches to completely
integrate the mmWave antenna array, RF unit,
and baseband modem in the foreseeable future.
In the meantime, the mmWave cellular phone
prototype containing two sets of 16-element
mesh grid antenna arrays is tested and mea-
sured in conjunction with a reference mmWave
base station prototype as illustrated in Fig. 4.
The measurement scenario is confined to an
LOS environment inside a laboratory located in
the headquarters of Samsung Electronics,
Suwon, South Korea. The cellular phone proto-
type is fixed at a distance of 6 m away from the
base station prototype. Afterward, both mesh
grid antenna arrays are connected to the two
available downlink channels of the RF unit and
designated as the device under test (DUT). A
16-QAM signal with 528 Mb/s data rate is trans-
mitted from the mmWave base station proto-
type. Each of the antenna arrays are activated
alternately to separately measure the error vec-
tor magnitude (EVM) for each discrete beam
steering angles and confirm 10–6 block error
rate (BLER). Based on this measurement, the
normalized radiation patterns of all the antenna
arrays are retrieved. The identical procedure is
repeated for scenarios when the mesh grid
antenna array is exposed to free space condi-

Figure 3. Photographs of the mmWave 5G antenna system prototype: a)
standalone view of the antenna array with K type coaxial connectors; b)
integrated inside a Samsung cellular phone and zoomed in views of the
mmWave antenna region.

<0.2 mm

16-element array 1

16-element array 2

(a)

(b)

Figure 4. Measurement configuration of the mmWave 5G cellular device
prototype.

Carrier frequency

Bandwidth/duplexing

TX/RX configuration

Channel coding

Modulation

27.925 GHz

520 MHz / TDD

TX: base station (BS) ant.
RX: mesh-grid array (MS)

LDPC

QPSK/16-QAM

256 elements (16 ×16) array
(~24 dBi antenna gain)

MS
BS

8 cm

8 cm

HONG_LAYOUT_Layout  8/28/14  4:45 PM  Page 67

Large NTX provides 
better AoD resolvability
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Approaches and assumptions for mmWave localization

Zero knowledge vs. 
some PO info of 

anchors 

Model driven vs. 
data driven 
approaches

Layered vs. direct 
approaches

Delay domain vs. 
angle domain or 

combined 
approaches
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A ML  
approach to 
mmWave
localization
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Positioning based Beamformed Fingerprints 

A collection of PDPs obtained 
with different transmit 

beampatterns provides position 
information  

Requires a single anchor
Each propagation path provides a 

unique power attenuation and 
delay

Deep Learning Architectures for Accurate Millimeter... 493

Fig. 2 Noiseless beamformed fingerprints examples from the experimental simulations, containing the PDP
for each beamformed transmission on the vertical axis

fingerprint data (X) has a negligible dependency on the mobile device orientation if the
receiver BF codebook does cover all AoAs, since it considers the maximum value among all
used receiver BFs.

After the required fingerprint data X is obtained, the previously trained DL method can
finally infer the device position in phase C.With a DLmethod, the system learns to cope with
the non-linearities introduced by reflections and other propagation artifacts. Interestingly,
the work in [6], released shortly after the original proposal of the BFFs [8], pointed out ML
methods as a possible solution to cope with the non-linearities, which disabled any viable
NLOS experimental results.

It should also be noted that each BS will have their own dataset and, therefore, their own
model. The system performance is determined mainly by the data obtained in phase B and
the DL architecture used in this phase, which are further analyzed in the following sections.

During phase D, the device receives the position estimate from the BS. Phase C could be
performed at the mobile device, avoiding the data upload to the BS (and phase D altogether).
However, the device would have to download millions of weights from each BS, and thus
herein we consider the predictions are computed at the BS (as depicted in Fig. 1). Moving
the inference to the BS also allows the system to centralize the users’ position information,
enabling further applications (e.g. optimized traffic management and positioning-aided BF
selection [24]).

3.2 Beamformed Fingerprint Data Analysis

One of the aspects that dictate the potential spatial information embedded within a beam-
formed fingerprint is the selected sampling period (T ). In fact, high quality data can be
obtained with sampling frequencies exceeding 10 MHz (i.e., T < 100 ns). In such con-
ditions, the radiation arriving from the multiple propagation paths is detected in clusters,
containing voids that are large enough to be reliably detected [25]. The ability to distin-
guish these voids provides a meaningful shape to the resulting data, enhancing the learning
capabilities of the system.

123

Example of noiseless fingerprints

Image taken from [1]

[1] J. Gante, G. Falcão, L. Sousa, “Deep Learning Architectures for Accurate Millimeter Wave PosiDoning in 5G”, Neural Processing LeHers (2020) 51:487–514  
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Proposed scheme and DNN
Deep Learning Architectures for Accurate Millimeter... 491

BF Pa!ern 1

BF Pa!ern 2

BF Pa!ern B

...

Received 
PDP is 

Sampled

Broadcast 
Radia"on

Sampled Data

Result

Base Sta"on Mobile
Device

A

B

CNN 
Inference Posi"on Fix

C D

Fig. 1 Overall scheme of the assessed system, as proposed in [8]. Themobile device samples the received PDPs
from radiation transmitted through a fixed set of beamforming patterns, resulting in a unique beamformed
fingerprint that can then be translated into its position

tion and delay. From an information theory point of view, each new path carries additional
information from the surrounding space, and thus can strengthen the predictive power of the
system. Based on this principle, a BFF can carry enough information to accurately locate a
listening mobile device. Throughout this section, both fingerprint acquisition process and its
data contents will be thoroughly analyzed.

3.1 Beamformed Fingerprint Data Acquisition

A critical component of any learnable dataset is its consistency, as it then allows the system
to extract helpful information from a trained mathematical model. To ensure so, the input
data must be gathered using an immutable methodology. Therefore, both transmission and
receiving procedures must remain constant in order to obtain valid fingerprints. To comply
with such requirements, the system depicted in Fig. 1 was originally suggested in [8]. It
operates in four distinct phases, as labeled in the diagram, whose details are further described
below. In phase A, a BS will broadcast radiation using a constant set of BF patterns, while
phase B focuses on measuring the resulting PDPs at the target device. After all the required
measurements are obtained and transmitted back to the BS, phase C infers the device’s
position, which will be relayed back in phase D.

The transmitter BF’s directivity, one of the key aspects that will dictate the resolu-
tion of the information embedded in the BFF, is defined in phase A. The directivity
determines how narrow the beam of transmitted radiation is. Therefore, increasing the
directivity of a given transmission translates into a PDP containing information with
higher specificity, focused on a particular sub-set of possible propagation paths. Fur-
thermore, by focusing the radiation, the number of paths with enough energy to be
detected by the receiver increases. Unfortunately, there is an associated trade-off: to
fully cover all possible angles of transmission, higher BF directivities correspond to a
higher number of PDP measurements required per position fix. Throughout this paper,
the exact mechanism to measure the timing of the non-zero samples within a PDP (i.e.

123

CNN training is guided by a loss function based 
on MSE in position estimate

Position estimation at the BS to avoid 
weights downloads from each BS 

Deep Learning Architectures for Accurate Millimeter... 497

Fig. 4 Overview of the hierarchical architecture proposed in [9]. Considering a solution space that can be
divided into K highly correlated sub-regions, the hierarchical architecture first employs a CNN classifier that
selects the most suitable sub-region ŝ. That sub-region’s dedicated CNN regressor is then used to obtain the
estimate, ŷ. To enhance the regressor’s precision, it is also fed with the output layer of the classifier, which can
be seen as a coarse estimate. Please note that each sub-model has its own set of learned weights, as indicated
by the different colors

it was not for the non-linear phenomena introduced with mmWave frequencies, the received
BFFs would have mostly smooth changes throughout the considered space. The non-linear
phenomena introduces discontinuities to the BFF data, if assessed throughout a continuous
route, segmenting the output space into multiple potential sub-regions, each with specific
patterns in the input data. Given that clear segmentation, in [9] we proposed a hierarchy-
based system to further refine the single BFF learning mechanism, as depicted in Fig. 4. This
implementation of the hierarchy concept was based on the work in [29], where the prediction
outcome of a coarse model may trigger specialized fine-grain models, which help to handle
harder input data.

As explained above, each BS’s covered space can be seen as a set of K sub-regions S
(S = {s1, . . . , sK },

⋃K
k=1sk = Y). If each sub-region contains a dedicated CNN, each with

a structure as defined in the previous sub-section, those K CNNs can specialize on their
own data partition. As adjacent positions are very likely to be highly correlated, and thus
contain similar data patterns, each dedicated CNN will have fewer patterns to learn, thus
facilitating the learning process. The sub-regions can be seen as coarse positions and, as
result, identifying the sub-region s of a new data sample is easier than pinpointing its exact
position. Therefore, a CNN classifier is used to predict the most likely ŝ, indicating which
dedicated CNN should be used to estimate the device location. As mentioned, the predicted
ŝ can be seen as a coarse position estimate and, therefore, the selected regressor is also fed
with the output layer of the CNN classifier, so as to enhance its precision.

Contrarily to image-based problems, where there are multiple lower level local features
such as lines, curves, and colors to be learned and shared, the data in a BFF not only is

123

K dedicated CNNs to cover K subregions in the 
coverage area

Images taken from [1]

[1] J. Gante, G. Falcão, L. Sousa, “Deep Learning Architectures for Accurate Millimeter Wave PosiDoning in 5G”, Neural Processing LeHers (2020) 51:487–514  

Orientation estimation not 
available
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Simulation results

Dataset using mmWave ray-tracing 
simulations in the New York University 
area is used, containing BFF data from 

160801 different bidimensional positions 

Estimation accuracy in the order of 3 m for sigma=2

Deep Learning Architectures for Accurate Millimeter... 503

Transmi!er
Legend:

Fig. 8 Ray-tracing simulation in the NewYork University area, using the parameters in Table 2 with a transmit
power of 30 dBm. The results shown correspond to themaximum received power for all possible transmit BFs,
in a 400 × 400 m area. In [24], it was shown that this simulation matched the experimental measurements in
[25]

MHz over a spawn of 4.1 µs, which contained over 99% of the path data. Regarding BF at
the receiver, a 10 dBi gain was considered (akin to [36]). In the following simulations, noise
is added to the obtained ray-tracing data following a log-normal distribution (also known as
slow fading). The noise was introduced before applying a detection threshold of −100 dBm,
which was selected due to the thermal noise for the considered bandwidth (−101 dBm). In all
the shown simulations, the data is binarized after adding the noise and applying the detection
threshold.

The resulting data was labeled with the corresponding bidimensional position, in a 400×
400 m2 area centered at the base station. When the area is split for the hierarchical model,
only powers of 4 partitions are considered, where each physical dimension is subsequently
bisected (e.g. when 64 partitions are considered, each dimension is bisected 8 times, resulting
in partitions with 50 × 50 m2).

To generate the sequences for the LSTMs and the TCNs, three types of synthetic sequences
were randomly generated: static, pedestrian-like, and vehicle-like sequences. While static
sequences remain in the same position for the complete duration, the other two types do not.
The pedestrian-like sequences were generated with a low average speed (5 km/h), but could
quickly stop or change their direction. On the other hand, the vehicle-like sequences were
generated with higher average speed (30 km/h) and acceleration, but with restricted steering
angle. Mimicking typical civilian GNSS receivers, all the sequences contain one sample per
second (i.e. sampled at 1 Hz), regardless of their length, resulting in paths as depicted in
Fig. 9. To be representative of a real scenario, where most users are moving, there is a ratio

123
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Table 2 Ray-tracing simulation parameters

Parameter name Value

Carrier frequency 28 GHz

Transmit power 45 dBm

Tx. antenna gain 24.5 dBi (horn antenna)

HPBW 10.9◦

Transmitter downtilt 10◦

Codebook size 32 (155◦ arc with 5◦ between entries)

Receiver grid size 160801 (400 × 400 m, 1 m between Rx,

1 m above the ground)

Samples per Tx. BF 82 (4.1µs @ 20 MHz)

Assumed Rx. Gain 10 dBi (as in [36])

Detection threshold −100 dBm

Added noise σ = [2, 10] dB (Log-Normal)

where L is the length of the dilated convolution, and d is the dilation factor. Since d is set to
grow exponentially with the depth of the network, each subsequent layer can be interpreted
as a zoom out in the sequence data, enabling the network to perceive larger sequences with
few learnable parameters. If the TCN’s receptive field is larger than the input sequence, the
input sequence can be zero-padded.

Finally, the last key element of a TCN is the use of the residual block [35]. With the TCN’s
residual block, the network has access to the original input data every two dilated convolution
layers, which is critical to stabilize large networks. More formally, if x is the input of a given
residual block, its output ỹ defined as

ỹ = a
(
F(x)+ x

)
, (16)

where a is an activation function, andF represents a series of transformations corresponding
to the two dilated convolutions within the residual block (with 1D convolutions being used
to match x to F(x), if needed). By stacking these residual blocks, a TCN is built. The output
of the last residual block, ỹ, must then go through the output layer, so as to extract the desired
prediction (ŷ).

6 Simulations and Experimental Results

6.1 Evaluation Apparatus

To evaluate the proposed system accuracy, a dataset using mmWave ray-tracing simulations
in the New York University (NYU) area is used, containing BFF data from 160801 differ-
ent bidimensional positions. The propagation specifications in Table 2 were inherited from
the experimental measurements in [25] and, in [24], it was shown that these ray-tracing
simulations (presented in Fig. 8) matched the aforementioned experimental measurements.

While the used ray-tracing software (Wireless InSite 3.0.0.1 [37])was unable to control BF
patterns, a physically rotating horn antenna was used, producing similar directive radiation
patterns. For each of the 32 elements in CT x , the received power data was sampled at 20

123
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Table 3 CNN and Hierarchical
CNN hyperparameters

Parameter Name Value

Convolutional layers 1 layer (8 features with 3 × 3 filters)

Pooling layers 2 × 1 max-pooling

Hidden layers 12 (256 neurons each)

Regression output Linear with 2 neurons (2D position)

Classification output Softmax with K classes

(Hierarchical CNN’s 1st model)

Epochs Up to 1000 (early stopping [38] after 50
non-improving epochs)

Batch size 64

Optimizer ADAM [39]

Learning rate 10−4

Learning rate decay 0.995

Dropout 0.01

Fig. 10 Average and 95th percentile prediction errors for multiple number of partitions and noise levels (σ ).
While it is a tool to extract additional accuracy, an excessive number of partitions has adverse consequences

Fig. 4). While potentially sub-optimal, the single hyperparameter set is shared between the
two stages of the model so as to alleviate the search complexity.

In Fig. 10, the number of data partitions (K ) for the hierarchical convolutional neural
network is assessed, where K = 1 is equivalent to a non-hierarchical model. It is interesting
to notice that the predictions for K > 64 yield roughly the same average error, at the
expense of an increased 95th percentile error. This means that although more specialized
regressors result in improved predictions for correctly classified samples, the higher number
of misclassified samples during the classification stage reverts those gains, as discussed in
Sect. 4.2. Considering a partion-less dataset (i.e., K = 1), the average error ranges from
4.57 m to 6.17 m, for low and high noise values, respectively, with a 95th percentile error
never exceeding 16.3 m. The best results were obtained when K = 64, with an average

123

Images taken from [1]

[1] J. Gante, G. Falcão, L. Sousa, “Deep Learning Architectures for Accurate Millimeter Wave PosiDoning in 5G”, Neural Processing LeHers (2020) 51:487–514  
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A layered
approach to 
mmWave
localization
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Fig. 1. Two dimensional illustration of the LOS (blue link) and NLOS
(red link) based positioning problem. The BS location q and BS orientation
are known, but arbitrary. The location of the MS p, scatterer sk , rotation
angle α, AOAs {θRx,k}, AODs {θTx,k }, the channels between BS, MS, and
scatterers, and the distance between the antenna centers are unknown.

B. Channel Model

Fig. 1 shows the position-related parameters of the channel.
These parameters include θRx,k , θTx,k , and dk = cτk , denoting
the AOA, AOD, and the path length (with time-of-arrival
(TOA) τk and the speed of light c) of the k-th path (k = 0 for
the LOS path and k > 0 the NLOS paths). For each NLOS
path, there is a scatterer with unknown location sk , for which
we define dk,1 = ∥sk−q∥2 and dk,2 = ∥p−sk∥2. We now intro-
duce the channel model, under a frequency-dependent array
response [11], suitable for wideband communication (with
fractional bandwidth B/ fc up to 50%). Assuming K +1 paths
and a channel that remains constant during the transmission
of G symbols, the Nr × Nt channel matrix associated with
subcarrier n is expressed as

H[n] = ARx[n]$[n]AH
Tx[n], (1)

for response vectors

ATx[n] = [aTx,n(θTx,0), . . . , aTx,n(θTx,K )], (2)

ARx[n] = [aRx,n(θRx,0), . . . , aRx,n(θRx,K )], (3)

and

$[n] =
√

Nt Nr

× diag
{

h0√
ρ0

e
− j2πnτ0

NTs , . . . ,
hK√
ρK

e
− j2πnτK

NTs

}
, (4)

for path loss ρk and complex channel gain hk , respectively, of
the k-th path. For later use, we introduce h̃k = √

(Nt Nr )/ρkhk
and γn(hk, τk) = h̃ke− j2πnτk/(NTs ).

The structure of the frequency-dependent antenna steering
and response vectors aTx,n(θTx,k) ∈ CNt and aRx,n(θRx,k) ∈
CNr depends on the specific array structure. For the case of a
uniform linear array (ULA), which will be the example studied
in this paper, we recall that (the response vector aRx,n(θRx,k)
is obtained similarly)

aTx,n(θTx,k)

= 1√
Nt

[e− j Nt −1
2

2π
λn

d sin(θTx,k ), . . . , e j Nt −1
2

2π
λn

d sin(θTx,k)]T,

(5)

where λn = c/(n/(NTs ) + fc) is the signal wavelength at the
n-th subcarrier and d denotes the distance between the antenna
elements (we will use d = λc/2). We note that when B ≪ fc,
λn ≈ λc, and (5) reverts to the standard narrow-band model.

C. Received Signal Model

The received signal for subcarrier n and transmission g,
after CP removal and fast Fourier transform (FFT), can be
expressed as

y(g)[n] = H[n]F(g)[n]x(g)[n] + n(g)[n], (6)

where n(g)[n] ∈ CNr is a Gaussian noise vector with zero
mean and variance N0/2 per real dimension. Our goal is
now to estimate the position p and orientation α of the MS
from {y(g)[n]}∀n,g . We will first derive a fundamental lower
bound on the estimation uncertainty and then propose a novel
practical estimator.

III. POSITION AND ORIENTATION ESTIMATION:
FUNDAMENTAL BOUNDS

In this section, we derive the FIM and the Cramér-Rao
bound (CRB) for the estimation problem of position and
orientation of the MS for LOS, NLOS, and OLOS. To simplify
the notation and without loss of generality, we consider the
case of G = 1, i.e., only 1 OFDM symbol is transmitted.

A. FIM Derivation for Channel Parameters

Let η ∈ R5(K+1) be the vector consisting of the unknown
channel parameters

η =
[
ηT

0 , . . . , ηT
K

]T
, (7)

in which ηk consists of the unknown channel parameters
(delay, AOD, AOA, and channel coefficients) for the k-th path

ηk =
[
τk, θ

T
k , h̃T

k

]T
, (8)

where h̃k = [h̃R,k, h̃I,k]T contains the real and imaginary parts
defined as h̃R,k and h̃I,k , respectively, and θ k =

[
θTx,k, θRx,k

]T.
Defining η̂ as the unbiased estimator of η, the mean squared

error (MSE) is bounded as [38]

Ey|η
[
(η̂ − η)(η̂ − η)T

]
≽ J−1

η , (9)

in which Ey|η[.] denotes the expectation parameterized by the
unknown parameters η, and Jη is the 5(K + 1) × 5(K + 1)
FIM defined as

Jη ! Ey|η

[
−∂2 ln f (y|η)

∂η∂ηT

]
, (10)

where f (y|η) is the likelihood function of the random vector
y conditioned on η. More specifically, f (y|η) can be written
as [39]

f (y|η) ∝ exp

{
2

N0

N−1∑

n=0

ℜ{µH[n]y[n]} − 1
N0

N−1∑

n=0

∥µ[n]∥2
2

}

,

(11)
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denoted as prc(⌧). Using the bandlimited nature of the pulse
shaping filter, the discrete-time, frequency selective channel
with Nc delay taps can be represented in terms of the antenna
array response vectors of the receiver aR(�`) 2 CNr⇥1 and
transmitter aT(✓`) 2 CNt⇥1, so that the dth delay tap of the
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↵`prc(dTs � ⌧`)aR(�`)a
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for d = 0, 1, · · · , Nc and with Ts denoting the sampling inter-
val. Using the geometric channel model in (1), the complex
channel matrix in the frequency domain can be written as

H [k] =
Nc�1X

d=0

Hde
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K , (2)

which can be compactly written, with �k,` =PNc�1
d=0 prc(dTs � ⌧`)e�j 2⇡kd

K , as

H [k] =

r
NrNt

L

LX
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↵`�k,`aR(�`)a
⇤
T(✓`). (3)

Consider a hybrid precoder-receiver architecture [3] for the
frequency selective mmWave system. We assume block trans-
mission of length N with zero padding (ZP) or cyclic prefix
(CP) of length at least Nc � 1 appended to each transmitted
frame as shown in Fig. XXX. The precoder-combiner pair
are assumed to be fixed during the transmission of a frame.
Appropriate signal processing can be used at the transmitter
and the receiver [4], [5] to remove inter-symbol interference
occurring during the data transmission, to obtain K parallel
narrowband channels in the frequency domain. With F(m)

and W(m), respectively denoting the precoder and combiner
used during the transmission-reception of the mth frame, the
received symbol post combining in the kth subcarrier can be
written as

y
(m)
k = W⇤

(m)H [k]F(m)xk + nk. (4)
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Wideband channel model in the frequency domain

Fig. 1. Illustration of time varying channel model using geometric stochastic
approach with L = 2 dominant multipath clusters. Coordinate of each scatterer
cluster are generated at the beginning of channel realization (t0) and remain
fixed. Variation of channel small scale parameters at tn follows changed UE
location and straightforward geometry.

matrices FRF and WRF are identical for all subcarriers [14].
Due to sparse scattering in mmWave band [3], the channel
consists of a few dominant multipath clusters. In this work,
we use 2D model such that only azimuth angle of propagation
is considered. The frequency domain MIMO channel in the
k

th subcarrier at time tn is expressed as [17]

H(n)
[k] =

LX

l=1

RX

rl=1

↵

(n)
l,rl

exp

 
�|2⇡k⌧

(n)
l,rl

KTs

!
ar

⇣
�

(n)
l,rl

⌘
aH

t

⇣
✓

(n)
l,rl

⌘

(1)

where L is the number of multipath clusters, R is the number
of rays in each cluster. The sampling duration is denoted by
Ts. The complex gain, propagation delay, AOD, and AOA for
each multipath ray are denoted as ↵

(n)
l,rl

, ⌧ (n)l,rl
, ✓(n)l,rl

and �

(n)
l,rl

,
respectively at time tn and �l,rl , ✓l,rl 2 [�⇡/2,⇡/2], 8l, rl.
at(✓) 2 CNt and ar(�) 2 CNr are the spatial responses
of a half-wavelength spaced uniform linear array (ULA) as
assumed in both BS and UE. The i

th elements are {at(✓)}i =
e

|⇡i sin(✓)
/

p
Nt and {ar(�)}i = e

|⇡i sin(�)
/

p
Nr, respectively.

Our objective is to design an algorithm to track time
varying MIMO channel H(n)

[k] at UE. Different from explicit
channel estimation which requires excessive beam steering, the
proposed technique uses estimation of H(0)

[k] as baseline, e.g.,
[14], and tracks its time variation with significantly reduced
steering overhead.

Time varying wideband channel model: As illustrated in
Fig. 1, in each channel realization, the channel evolution
follows mobility of BS, UE and multipath scatterers. The BS
is located at zBS = [xBS, yBS]

T and the location of UE at time
tn is denoted by z

(n)
UE = [x

(n)
UE , y

(n)
UE ]

T. The centroid of the l

th

scatterers cluster [xl, yl] is determined by mean delay of this
cluster ⌧l (on the ellipse with UE and BS at the two foci
at t0.) There are R scatterers in each cluster and they are
located at zl,rl = [xrl , yrl ]

T, such that xrl ⇠ N (xl,�
2
l ) and

yrl ⇠ N (yl,�
2
l ). As proposed in geometric stochastic channel

modeling approach in mmMAGIC project [15], the locations of
scatterers are fixed within spatial correlation distance (typically
a few meters.) In the tracking time interval of interest, we adopt
this assumption to model time varying channel.

The temporal evolution of the channel H(n)
[k] is modeled

implicitly by the variation of small scale parameters (SSP)

namely, ↵(n)
l,rl

, ⌧

(n)
l,rl

, ✓

(n)
l,rl

,�

(n)
l,rl

. The complex gains of rays are
assumed to have equal power within cluster [16], and it follows
Gaussian Markov model, i.e., ↵(n)

l,rl
= ⇢↵

(n�1)
l,rl

+ ⇣

(n)
l,rl

, where ⇢

is the correlation factor and ⇣

(n)
l,rl

⇠ CN (0, 1�⇢

2
). We consider

two kinds of motion of the UE: position change and array
orientation change. In the former, the location of UE changes
as z

(n)
UE = z

(n�1)
UE + v�t with constant speed v over time

interval of interest and �t = tn�tn�1 is the duration between
adjacent time slots. Delays and angles ⌧

(n)
l,rl

,�

(n)
l,rl

evolve with
the changed relevant locations between scatterers and the UE,
based on straightforward geometry at each time tn as shown in
Figure. 1. Since we focus on the UE, we remove superscripts
in ✓l,rl for clarity. The rotation of UE results in the change
of AOA of all rays. We denote UE array rotational speed
as ��/�t. In summary, the time varying channel parameter
evolves as

�

(n)
l,rl

=�

(n�1)
l,rl

+ \
⇣
zl,rl � z

(n)
UE

⌘
� \

⇣
zl,rl � z

(n�1)
UE

⌘
+

��

�t

�t

⌧

(n)
l,rl

=⌧

(n�1)
l,rl

+

kz(n)UE � zl,rlk � kz(n�1)
UE � zl,rlk

c

(2)

where c is speed of light and \([x, y]T) , tan

�1
(y/x).

III. WIDEBAND CHANNEL TRACKING

In this section, we present the channel tracking algorithm.

We assume that a baseline MIMO channel estimation, e.g.,
[14], provides ˆH(0)

[k], as well as beam steering angles at mth

RF chain of BS, ¯

✓m, and UE ¯

�m at t0. Therefore, the RF
beamforming at BS and UE are FRF = [at( ¯✓1), · · · ,at( ¯

✓M )]

and WRF = [ar( ¯�1), · · · ,ar( ¯

�M )]. Without loss of generality,
we focus on the 1

st RF chain and drop the subscription m for
clarity. The effective channel for 1st RF chain after RF beam-
forming is h

(n)
[k] = {WRF}H

:,1H
(n)

[k]{FRF}:,1{FBB}1,1 +

{WRF}H
:,1v[k]. Such post-beamforming channel h

(n)
[k] can

be easily estimated by pilots symbols [18]. We denote the
estimated post-BF channel as ˜

h

(n)
[k]. Note that ˜

h

(n)
[k] is

function of SSP as ˜

h

(n)
[k] = g(k,↵l,rl , ⌧

(n)
l,rl

,�

(n)
l,rl

, ✓l,rl),
where

g(k,↵

(n)
l,rl

, ⌧

(n)
l,rl

,�

(n)
l,rl

, ✓l,rl) =

RX

r1=1


↵

(n)
1,r1exp

 
�|

2⇡k⌧

(n)
1,r1

KTs

!

· 1� e

j⇡Nr�
(n)
1,r1

1� e

j⇡�(n)
1,r1

1� e

j⇡Nt⇥1,r1

1� e

j⇡⇥1,r1

�
+

LX

j=2

I

(n)
j [k] + ṽ[k] (3)

where ⇥l,rl , sin(✓l,rl) � sin(

¯

✓1) and �

(n)
l,rl

, sin(�

(n)
l,rl

) �
sin(

¯

�1) and the associated terms represents array gain for such
multipath cluster. In the above equation, ṽ[k] is AWGN after
RF combining. Il[k] is the interference from other propagation
path received through sidelobes

I

(n)
j [k] =

RX

rj=1

↵

(n)
j,rj

e

�|2⇡k⌧
(n)
j,rj

KTs aH
r (

¯

�1)ar(�
(n)
j,rj

)aH
t (✓

(n)
j,rj

)at(¯✓1
| {z }

Sidelobe Gain

)

The AOA and AOD of the j

th multipath clusters are typically
well-separated from the 1

st cluster and its sidelobe gain is
negligible. Thus, we treat I(n)j [k] as noise aggregated in ṽ[k]

in following derivation.
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where the Ns ⇥ 1 vector n(n)
[k] is the complex-valued additive Gaussian-distributed received

noise n(n)
[k] ⇠ N (0, �2W(n)⇤

BB [k]W
(n)⇤
RF W

(n)
RF W

(n)
BB [k]).

B. Frequency-Selective Channel Model

• Time-domain and frequency-domain wideband channel model

• Large-Scale Parameters (LSP) and Small-Scale Parameters (SSP) obtained from Quadriga

(explain distributions and generation procedure)

• Spatial consistency model from 3GPP implemented in Quadriga

The d-th delay tap of the millimeter-wave MIMO channel matrix at n-th channel slot is defined

using a geomeotry-based model [XXX freq domain paper]

H(n)
[d] =

C
X

c=1

Rc
X

r=1

↵

(n)
c,r p

�

dTs � ⌧

(n)
c,r

�

aR
�

�

(n)
c,r

�

a⇤
T

�

✓

(n)
c,r

�

, (2)

where ↵

(n)
c,r 2 C is the complex gain of the r-th ray within the c-th cluster, �(n)

c,r , ✓(n)c,r 2 R are the

AoA and AoD, ⌧ (n)c,r 2 R is the time-delay, and p(⌧) models the equivalent response of transmit

and receive pulse-shapes and other analog filtering evaluated at ⌧ . The total number of clusters

is C, and the c-th cluster consists of Rc rays. Last, aT

⇣

✓

(n)
c,r

⌘

2 CNt⇥1 and aR

⇣

�

(n)
c,r

⌘

2 CNr⇥1

are the transmit and receive array steering vectors evaluated on the AoD and AoA of each

corresponding path. The frequency-domain channel response at subcarrier k is obtained by taking

the K-point (K � Nc) DFT as

H(n)
[k] =

Nc�1
X

d=0

H(n)
[d]e

�j 2⇡kd
K

. (3)

The frequency-domain channel response in (3) can be compactly expressed as

H[k] = AR
�

�(n)
�

G(n)
[k]A⇤

T

�

✓(n)
�

, (4)

where AT
�

✓(n)
�

2 CNt⇥
PC

c=1 Rc , AR
�

�(n)
�

2 CNr⇥
PC

c=1 Rc denote the transmit and receive

antenna array responses, and G(n)
[k] 2 C

PC
c=1 Rc⇥

PC
c=1 Rc is the diagonal matrix containing the

complex channel gains.

Recently, several channel models for mmWave communications have been investigated. As a

result, channel simulators such as NYUSIM [XXX] and QuaDRiGa [XXX,XXX] have become

available to design and implement signal processing algorithms for different purposes. In this

work, we focus on QuaDRiGa channel simulator, since it incorporates the necessary features to
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C. Step 2: Fine Estimation of Channel Parameters
Using SAGE

Channel parameter estimates are refined in an iterative
procedure, which is initialized by the estimates from step 1.
In principle, we can perform an iterative ascent algorithm
directly on the log-likelihood function associated with the
model (36). However, this requires a multi-dimensional min-
imization and computationally complex solutions. A more
practical approach is to use the SAGE algorithm with the
incomplete data space in (36) as the superposition of K + 1
complete data space y̌k[n] as:

y̌[n] =
K̂∑

k=0

![n]ȟk[n] + ňk[n]︸ ︷︷ ︸
y̌k [n]

, (55)

where ȟk[n] denotes the vectorized form of Ȟk[n] =
UH

RxHk[n]UTx with Hk[n] being the corresponding term for
the k-th path in the channel frequency response H[n] in (1).
Writing (55) for all the subcarriers results in:

y̌ =
K̂∑

k=0

!̌ȟk + ňk︸ ︷︷ ︸
y̌k

, (56)

where

!̌ = diag {![0], . . . ,![N − 1]},
y̌ =

[
y̌T[0], . . . , y̌T[N − 1]

]T
,

ȟk =
[
ȟT

k [0], . . . , ȟT
k [N − 1]

]T
,

ňk =
[
ňT

k [0], . . . , ňT
k [N − 1]

]T
.

In the (m + 1)-th iteration where m is the iteration index, the
expectation and maximization steps are performed as described
below. For the initialization of the iterative procedure, we
use the AOA/AOD, TOA, and channel coefficients from the
detection phase using θ̂ (0)

Tx,k and θ̂ (0)
Rx,k obtained from (44)

and (45), respectively, τ̂ (0)
k computed from (54), and the

corresponding coefficient obtained from (53).
Expectation Step: We compute the conditional expectation

of the hidden data space y̌k log-likelihood function based on
the previous estimation η̂(m) and the incomplete data space y̌
as:

Q(ηk |η̂(m)) ! E
[
ln f (y̌k |ηk, {η̂(m)

l }l ̸=k)|y̌, η̂(m)
]
. (57)

For k = 0, . . . , K̂ , we obtain

Q(ηk |η̂(m)) ∝ −∥ẑ(m)
k − µ̌(ηk)∥2

2, (58)

where µ̌(ηk) = !̌ȟk , and

ẑ(m)
k = y̌ −

K̂∑

l ̸=k,l=0

µ̌(η̂(m)
l ). (59)

Maximization Step: The goal is to find ηk such that (58) is
maximized. In other words, we have

η̂
(m+1)
k = argmax

ηk

Q(ηk |η̂(m)). (60)

Solving (60) directly for ηk is analytically complex due to
the fact that it is hard to compute the gradient and Hessian
with respect to ηk . Instead, we update the parameters θ̂ (m+1)

Tx,k ,

θ̂ (m+1)
Rx,k , τ̂ (m+1)

k , and ˆ̃h(m+1)
k sequentially using Gauss-Seidel-

type iterations [46].

D. Step 3: Conversion to Position and Rotation
Angle Estimates

As a final step, based on the refined estimates of
AOA/AOD/TOA from step 2, here we show how the position
and orientation of the MS is recovered. Four scenarios are
considered: LOS, NLOS, OLOS, and unknown condition.

• LOS: When K̂ = 1 and we are in LOS condition, the
expressions (17), (19), and (22) describe a mapping η =
f los(η̃). The classical invariance principle of estimation
theory is invoked to prove the equivalence of minimizing
the maximum likelihood (ML) criterion in terms of either
η0 or η̃0 [47]. Consequently, the estimated values of p̂ and
α̂ are obtained directly from

p̂ = q + cτ̂0[cos(θ̂Tx,0), sin(θ̂Tx,0)]T, (61)

α̂ = π + θ̂Tx,0 − θ̂Rx,0. (62)

• NLOS: For the case with K̂ scatterers and a LOS path,
the EXIP can be used, as (17)–(22) describe a mapping
η = f nlos(η̃). Consequently, the estimated ˆ̃η obtained as

ˆ̃η = argmin
η̃

&η̂T
nlos(η̃)Jη̂&η̂nlos(η̃)

︸ ︷︷ ︸
vnlos(η̃)

, (63)

with &η̂nlos(η̃) = η̂ − f nlos(η̃), is asymptotically
(w.r.t. G × N) equivalent to the ML estimate of the
transformed parameter η̃ [35], [36]. Note that Jη could be
replaced by the identity matrix, leading also to a mean-
ingful estimator of η̃, although with probably slightly
larger root-mean-square error (RMSE). The Levenberg-
Marquardt algorithm (LMA) can be used to solve (63)
[48], [49], initialized as follows: we first estimate p̂ and
α̂ from the LOS path (i.e., the path with the smallest
delay). Then, for the first-order reflection ŝk can be
obtained by the intersection of the following two lines:
tan(π − (θ̂Rx,k + α̂)) = ( p̂y − s1,y)/( p̂x − s1,x) and
tan(θ̂Tx,k) = (s1,y − qy)/(s1,x − qx).

• OLOS: For the case with K̂ scatterers and no LOS
path, the EXIP could be used, as (18), (20), and (21)
describe a mapping ηolos = f olos(η̃olos). Consequently,
the estimated ˆ̃ηolos obtained as

ˆ̃ηolos = argmin
η̃olos

&η̂T
olos(η̃olos)Jη̂olos

&η̂olos(η̃olos)︸ ︷︷ ︸
volos(η̃olos)

, (64)

with &η̂olos(η̃olos) = η̂olos − f olos(η̃olos), is asymptoti-
cally equivalent to the ML estimate of the transformed
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Fig. 1. Two dimensional illustration of the LOS (blue link) and NLOS
(red link) based positioning problem. The BS location q and BS orientation
are known, but arbitrary. The location of the MS p, scatterer sk , rotation
angle α, AOAs {θRx,k}, AODs {θTx,k }, the channels between BS, MS, and
scatterers, and the distance between the antenna centers are unknown.

B. Channel Model

Fig. 1 shows the position-related parameters of the channel.
These parameters include θRx,k , θTx,k , and dk = cτk , denoting
the AOA, AOD, and the path length (with time-of-arrival
(TOA) τk and the speed of light c) of the k-th path (k = 0 for
the LOS path and k > 0 the NLOS paths). For each NLOS
path, there is a scatterer with unknown location sk , for which
we define dk,1 = ∥sk−q∥2 and dk,2 = ∥p−sk∥2. We now intro-
duce the channel model, under a frequency-dependent array
response [11], suitable for wideband communication (with
fractional bandwidth B/ fc up to 50%). Assuming K +1 paths
and a channel that remains constant during the transmission
of G symbols, the Nr × Nt channel matrix associated with
subcarrier n is expressed as

H[n] = ARx[n]$[n]AH
Tx[n], (1)

for response vectors

ATx[n] = [aTx,n(θTx,0), . . . , aTx,n(θTx,K )], (2)

ARx[n] = [aRx,n(θRx,0), . . . , aRx,n(θRx,K )], (3)

and

$[n] =
√

Nt Nr

× diag
{

h0√
ρ0

e
− j2πnτ0

NTs , . . . ,
hK√
ρK

e
− j2πnτK

NTs

}
, (4)

for path loss ρk and complex channel gain hk , respectively, of
the k-th path. For later use, we introduce h̃k = √

(Nt Nr )/ρkhk
and γn(hk, τk) = h̃ke− j2πnτk/(NTs ).

The structure of the frequency-dependent antenna steering
and response vectors aTx,n(θTx,k) ∈ CNt and aRx,n(θRx,k) ∈
CNr depends on the specific array structure. For the case of a
uniform linear array (ULA), which will be the example studied
in this paper, we recall that (the response vector aRx,n(θRx,k)
is obtained similarly)

aTx,n(θTx,k)

= 1√
Nt

[e− j Nt −1
2

2π
λn

d sin(θTx,k ), . . . , e j Nt −1
2

2π
λn

d sin(θTx,k)]T,

(5)

where λn = c/(n/(NTs ) + fc) is the signal wavelength at the
n-th subcarrier and d denotes the distance between the antenna
elements (we will use d = λc/2). We note that when B ≪ fc,
λn ≈ λc, and (5) reverts to the standard narrow-band model.

C. Received Signal Model

The received signal for subcarrier n and transmission g,
after CP removal and fast Fourier transform (FFT), can be
expressed as

y(g)[n] = H[n]F(g)[n]x(g)[n] + n(g)[n], (6)

where n(g)[n] ∈ CNr is a Gaussian noise vector with zero
mean and variance N0/2 per real dimension. Our goal is
now to estimate the position p and orientation α of the MS
from {y(g)[n]}∀n,g . We will first derive a fundamental lower
bound on the estimation uncertainty and then propose a novel
practical estimator.

III. POSITION AND ORIENTATION ESTIMATION:
FUNDAMENTAL BOUNDS

In this section, we derive the FIM and the Cramér-Rao
bound (CRB) for the estimation problem of position and
orientation of the MS for LOS, NLOS, and OLOS. To simplify
the notation and without loss of generality, we consider the
case of G = 1, i.e., only 1 OFDM symbol is transmitted.

A. FIM Derivation for Channel Parameters

Let η ∈ R5(K+1) be the vector consisting of the unknown
channel parameters

η =
[
ηT

0 , . . . , ηT
K

]T
, (7)

in which ηk consists of the unknown channel parameters
(delay, AOD, AOA, and channel coefficients) for the k-th path

ηk =
[
τk, θ

T
k , h̃T

k

]T
, (8)

where h̃k = [h̃R,k, h̃I,k]T contains the real and imaginary parts
defined as h̃R,k and h̃I,k , respectively, and θ k =

[
θTx,k, θRx,k

]T.
Defining η̂ as the unbiased estimator of η, the mean squared

error (MSE) is bounded as [38]

Ey|η
[
(η̂ − η)(η̂ − η)T

]
≽ J−1

η , (9)

in which Ey|η[.] denotes the expectation parameterized by the
unknown parameters η, and Jη is the 5(K + 1) × 5(K + 1)
FIM defined as

Jη ! Ey|η

[
−∂2 ln f (y|η)

∂η∂ηT

]
, (10)

where f (y|η) is the likelihood function of the random vector
y conditioned on η. More specifically, f (y|η) can be written
as [39]

f (y|η) ∝ exp

{
2

N0

N−1∑

n=0

ℜ{µH[n]y[n]} − 1
N0

N−1∑

n=0

∥µ[n]∥2
2

}

,

(11)

Orientation of 
the device

Position of the 
device

For the LOS case, there is a simple mapping between position and channel 
parameters

AoD for LOS 
path

AoA for LOS 
path

Delay for LOS path
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where µ[n] ! H[n]F[n]x[n] and ∝ denotes equality up to
irrelevant constants.

The FIM in (10) can be structured as

Jη =

⎡

⎢⎣
!(η0, η0) . . . !(η0, ηK )

...
. . .

...
!(ηK , η0) . . . !(ηK , ηK )

⎤

⎥⎦, (12)

in which !(xr , xs) is defined as

!(xr , xs) ! Ey|η

[
−∂2 ln f (y|η)

∂xr∂xT
s

]
. (13)

The 5 × 5 matrix !(ηr , ηs) is structured as

!(ηr , ηs) =

⎡

⎣
!(τr , τs) !(τr , θ s) !(τr , hs)
!(θr , τs) !(θr , θ s) !(θr , hs)
!(hr , τs) !(hr , θ s) !(hr , hs)

⎤

⎦. (14)

The entries of !(ηr , ηs) are derived in Appendix A.

B. FIM for Position and Orientation

We determine the FIM in the position space through a trans-
formation of variables from η to η̃ = [

η̃T
0 , . . . , η̃T

K

]T
, where

η̃k = [
sT

k , h̃T
k

]T
for k > 0 and η̃0 = [

pT,α, h̃T
0

]T
. If the LOS

path is blocked (i.e., OLOS), we note that we must consider
ηolos = [ηT

1 , . . . , ηT
K ]T and η̃olos = [pT,α, η̃T

1 , . . . , η̃T
K ]T.

The FIM of η̃ is obtained by means of the (4K +5)×5(K +
1) transformation matrix T as

Jη̃ = TJηTT, (15)

where

T ! ∂ηT

∂ η̃
. (16)

The entries of T can be obtained by the relations between
the parameters in η and η̃ from the geometry of the problem
shown in Fig. 1 as:

τ0 = ∥p − q∥2/c, (17)

τk = ∥q − sk∥2/c + ∥p − sk∥2/c, k > 0 (18)

θTx,0 = arccos((px − qx)/∥p − q∥2), (19)

θTx,k = arccos((sk,x − qx)/∥sk − q∥2), k > 0 (20)

θRx,k = π − arccos((px − sk,x )/∥p − sk∥2) − α, k > 0

(21)

θRx,0 = π + arccos((px − qx)/∥p − q∥2) − α. (22)

Consequently, we obtain

T =

⎡

⎢⎣
T0,0 . . . TK ,0

...
. . .

...
T0,K . . . TK ,K

⎤

⎥⎦ , (23)

in which Tk,k′ is defined as

Tk,k′ ! ∂ηT
k

∂ η̃k′
. (24)

For k ′ ̸= 0, Tk,k′ is obtained as

Tk,k′ =
[
∂τk/∂sk′ ∂θT

k /∂sk′ ∂ h̃T
k /∂sk′

∂τk/∂ h̃k′ ∂θT
k /∂ h̃k′ ∂ h̃T

k /∂ h̃k′

]
, (25)

and Tk,0 is obtained as

Tk,0 =
⎡

⎣
∂τk/∂p ∂θT

k /∂p ∂ h̃T
k /∂p

∂τk/∂α ∂θT
k /∂α ∂ h̃T

k /∂α
∂τk/∂ h̃0 ∂θT

k /∂ h̃0 ∂ h̃T
k /∂ h̃0

⎤

⎦, (26)

where

∂τ0/∂p = 1
c

[
cos(θTx,0), sin(θTx,0)

]T
,

∂θTx,0/∂p = 1
∥p − q∥2

[− sin(θTx,0), cos(θTx,0)
]T

,

∂θRx,0/∂p = 1
∥p − q∥2

[− sin(θTx,0), cos(θTx,0)
]T

,

∂θRx,k/∂α = −1, k ≥ 0

∂τk/∂p = 1
c

[
cos(π − θRx,k),− sin(π − θRx,k)

]T
, k > 0

∂τk/∂sk = 1
c
[cos(θTx,k) + cos(θRx,k),

sin(θTx,k) + sin(θRx,k)]T, k > 0

∂θTx,k/∂sk = 1
∥sk − q∥2

[− sin(θTx,k), cos(θTx,k)
]T

, k > 0

∂θRx,k/∂p = 1
∥p − sk∥2

[sin(π − θRx,k),

cos(π − θRx,k)]T, k > 0

∂θRx,k/∂sk = − 1
∥p − sk∥2

[sin(π − θRx,k),

cos(π − θRx,k)]T, k > 0

and ∂ h̃T
k /h̃k = I2 for k ≥ 0. The rest of entries in T are zero.

C. Bounds on Position and Orientation Estimation Error

The position error bound (PEB) is obtained by inverting Jη̃,
adding the diagonal entries of the 2×2 sub-matrix, and taking
the root square as:

PEB =
√

tr
{
[J−1

η̃ ]1:2,1:2
}
, (27)

and the rotation error bound (REB) is obtained as:

REB =
√

[J−1
η̃

]3,3, (28)

where the operations [.]1:2,1:2 and [.]3,3 denote the selection
of the first 2 × 2 sub-matrix and the third diagonal entry
of J−1

η̃ , respectively.

D. The Effect of Multi-Path Components on Position and
Orientation Estimation Error

In this subsection, we discuss the effect of adding
multi-path components (MPCs) for localization under
different conditions. As the number of antennas in the
MS increases, the scalar product between steering vectors
corresponding to different receive directions tends to vanish,
i.e. |aH

Rx,n(θRx,r )aRx,n(θRx,s)| ≪ 1 for θRx,r ̸= θRx,s . Also,
increasing the number of antenna elements in the transmitter
results in narrower beams and the spatial correlation between
different beams is reduced. Moreover, as the system bandwidth
increases, the different MPCs coming from different scatterers
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, where
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1) transformation matrix T as

Jη̃ = TJηTT, (15)

where

T ! ∂ηT

∂ η̃
. (16)

The entries of T can be obtained by the relations between
the parameters in η and η̃ from the geometry of the problem
shown in Fig. 1 as:

τ0 = ∥p − q∥2/c, (17)

τk = ∥q − sk∥2/c + ∥p − sk∥2/c, k > 0 (18)
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...
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the root square as:
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η̃ , respectively.
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different conditions. As the number of antennas in the
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corresponding to different receive directions tends to vanish,
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For k ′ ̸= 0, Tk,k′ is obtained as

Tk,k′ =
[
∂τk/∂sk′ ∂θT

k /∂sk′ ∂ h̃T
k /∂sk′

∂τk/∂ h̃k′ ∂θT
k /∂ h̃k′ ∂ h̃T

k /∂ h̃k′

]
, (25)

and Tk,0 is obtained as

Tk,0 =
⎡

⎣
∂τk/∂p ∂θT

k /∂p ∂ h̃T
k /∂p

∂τk/∂α ∂θT
k /∂α ∂ h̃T

k /∂α
∂τk/∂ h̃0 ∂θT

k /∂ h̃0 ∂ h̃T
k /∂ h̃0

⎤

⎦, (26)

where

∂τ0/∂p = 1
c

[
cos(θTx,0), sin(θTx,0)

]T
,

∂θTx,0/∂p = 1
∥p − q∥2

[− sin(θTx,0), cos(θTx,0)
]T

,

∂θRx,0/∂p = 1
∥p − q∥2

[− sin(θTx,0), cos(θTx,0)
]T

,

∂θRx,k/∂α = −1, k ≥ 0

∂τk/∂p = 1
c

[
cos(π − θRx,k),− sin(π − θRx,k)

]T
, k > 0

∂τk/∂sk = 1
c
[cos(θTx,k) + cos(θRx,k),

sin(θTx,k) + sin(θRx,k)]T, k > 0

∂θTx,k/∂sk = 1
∥sk − q∥2

[− sin(θTx,k), cos(θTx,k)
]T

, k > 0

∂θRx,k/∂p = 1
∥p − sk∥2

[sin(π − θRx,k),

cos(π − θRx,k)]T, k > 0

∂θRx,k/∂sk = − 1
∥p − sk∥2

[sin(π − θRx,k),

cos(π − θRx,k)]T, k > 0

and ∂ h̃T
k /h̃k = I2 for k ≥ 0. The rest of entries in T are zero.

C. Bounds on Position and Orientation Estimation Error

The position error bound (PEB) is obtained by inverting Jη̃,
adding the diagonal entries of the 2×2 sub-matrix, and taking
the root square as:

PEB =
√

tr
{
[J−1

η̃ ]1:2,1:2
}
, (27)

and the rotation error bound (REB) is obtained as:

REB =
√

[J−1
η̃

]3,3, (28)

where the operations [.]1:2,1:2 and [.]3,3 denote the selection
of the first 2 × 2 sub-matrix and the third diagonal entry
of J−1

η̃ , respectively.

D. The Effect of Multi-Path Components on Position and
Orientation Estimation Error

In this subsection, we discuss the effect of adding
multi-path components (MPCs) for localization under
different conditions. As the number of antennas in the
MS increases, the scalar product between steering vectors
corresponding to different receive directions tends to vanish,
i.e. |aH

Rx,n(θRx,r )aRx,n(θRx,s)| ≪ 1 for θRx,r ̸= θRx,s . Also,
increasing the number of antenna elements in the transmitter
results in narrower beams and the spatial correlation between
different beams is reduced. Moreover, as the system bandwidth
increases, the different MPCs coming from different scatterers

Geometry of the problem

Use AOA, DOA, TOA

[1] A. Shahmansoori et al., “Position and Orientation Estimation through Millimeter Wave MIMO in 5G Systems,” IEEE Trans. Wireless Commun. , March 2018.

Equations taken from [1]
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Fig. 1. Two dimensional illustration of the LOS (blue link) and NLOS
(red link) based positioning problem. The BS location q and BS orientation
are known, but arbitrary. The location of the MS p, scatterer sk , rotation
angle α, AOAs {θRx,k}, AODs {θTx,k }, the channels between BS, MS, and
scatterers, and the distance between the antenna centers are unknown.

B. Channel Model

Fig. 1 shows the position-related parameters of the channel.
These parameters include θRx,k , θTx,k , and dk = cτk , denoting
the AOA, AOD, and the path length (with time-of-arrival
(TOA) τk and the speed of light c) of the k-th path (k = 0 for
the LOS path and k > 0 the NLOS paths). For each NLOS
path, there is a scatterer with unknown location sk , for which
we define dk,1 = ∥sk−q∥2 and dk,2 = ∥p−sk∥2. We now intro-
duce the channel model, under a frequency-dependent array
response [11], suitable for wideband communication (with
fractional bandwidth B/ fc up to 50%). Assuming K +1 paths
and a channel that remains constant during the transmission
of G symbols, the Nr × Nt channel matrix associated with
subcarrier n is expressed as

H[n] = ARx[n]$[n]AH
Tx[n], (1)

for response vectors

ATx[n] = [aTx,n(θTx,0), . . . , aTx,n(θTx,K )], (2)

ARx[n] = [aRx,n(θRx,0), . . . , aRx,n(θRx,K )], (3)

and

$[n] =
√

Nt Nr

× diag
{

h0√
ρ0

e
− j2πnτ0

NTs , . . . ,
hK√
ρK

e
− j2πnτK

NTs

}
, (4)

for path loss ρk and complex channel gain hk , respectively, of
the k-th path. For later use, we introduce h̃k = √

(Nt Nr )/ρkhk
and γn(hk, τk) = h̃ke− j2πnτk/(NTs ).

The structure of the frequency-dependent antenna steering
and response vectors aTx,n(θTx,k) ∈ CNt and aRx,n(θRx,k) ∈
CNr depends on the specific array structure. For the case of a
uniform linear array (ULA), which will be the example studied
in this paper, we recall that (the response vector aRx,n(θRx,k)
is obtained similarly)

aTx,n(θTx,k)

= 1√
Nt

[e− j Nt −1
2

2π
λn

d sin(θTx,k ), . . . , e j Nt −1
2

2π
λn

d sin(θTx,k)]T,

(5)

where λn = c/(n/(NTs ) + fc) is the signal wavelength at the
n-th subcarrier and d denotes the distance between the antenna
elements (we will use d = λc/2). We note that when B ≪ fc,
λn ≈ λc, and (5) reverts to the standard narrow-band model.

C. Received Signal Model

The received signal for subcarrier n and transmission g,
after CP removal and fast Fourier transform (FFT), can be
expressed as

y(g)[n] = H[n]F(g)[n]x(g)[n] + n(g)[n], (6)

where n(g)[n] ∈ CNr is a Gaussian noise vector with zero
mean and variance N0/2 per real dimension. Our goal is
now to estimate the position p and orientation α of the MS
from {y(g)[n]}∀n,g . We will first derive a fundamental lower
bound on the estimation uncertainty and then propose a novel
practical estimator.

III. POSITION AND ORIENTATION ESTIMATION:
FUNDAMENTAL BOUNDS

In this section, we derive the FIM and the Cramér-Rao
bound (CRB) for the estimation problem of position and
orientation of the MS for LOS, NLOS, and OLOS. To simplify
the notation and without loss of generality, we consider the
case of G = 1, i.e., only 1 OFDM symbol is transmitted.

A. FIM Derivation for Channel Parameters

Let η ∈ R5(K+1) be the vector consisting of the unknown
channel parameters

η =
[
ηT

0 , . . . , ηT
K

]T
, (7)

in which ηk consists of the unknown channel parameters
(delay, AOD, AOA, and channel coefficients) for the k-th path

ηk =
[
τk, θ

T
k , h̃T

k

]T
, (8)

where h̃k = [h̃R,k, h̃I,k]T contains the real and imaginary parts
defined as h̃R,k and h̃I,k , respectively, and θ k =

[
θTx,k, θRx,k

]T.
Defining η̂ as the unbiased estimator of η, the mean squared

error (MSE) is bounded as [38]

Ey|η
[
(η̂ − η)(η̂ − η)T

]
≽ J−1

η , (9)

in which Ey|η[.] denotes the expectation parameterized by the
unknown parameters η, and Jη is the 5(K + 1) × 5(K + 1)
FIM defined as

Jη ! Ey|η

[
−∂2 ln f (y|η)

∂η∂ηT

]
, (10)

where f (y|η) is the likelihood function of the random vector
y conditioned on η. More specifically, f (y|η) can be written
as [39]

f (y|η) ∝ exp

{
2

N0

N−1∑

n=0

ℜ{µH[n]y[n]} − 1
N0

N−1∑

n=0

∥µ[n]∥2
2

}

,

(11)
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o Initial estimation of p and a from LOS path
o For the first order reflection estimate the  

position of the scatterer , at the intersection 
of the lines:
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and the estimated channel parameters

Position of the kth-scatterer

Initial estimation 
of p and a

Channel parameters 
LOS component

Estimate position 
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Refine estimation 
of p and a
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reflection

Delay, AoA/AoD first 
reflection

[1] A. Shahmansoori et al., “Posi6on and Orienta6on Es6ma6on through Millimeter 
Wave MIMO in 5G Systems,” IEEE Trans. Wireless Commun. , March 2018.
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Fig. 1. Two dimensional illustration of the LOS (blue link) and NLOS
(red link) based positioning problem. The BS location q and BS orientation
are known, but arbitrary. The location of the MS p, scatterer sk , rotation
angle α, AOAs {θRx,k}, AODs {θTx,k }, the channels between BS, MS, and
scatterers, and the distance between the antenna centers are unknown.

B. Channel Model

Fig. 1 shows the position-related parameters of the channel.
These parameters include θRx,k , θTx,k , and dk = cτk , denoting
the AOA, AOD, and the path length (with time-of-arrival
(TOA) τk and the speed of light c) of the k-th path (k = 0 for
the LOS path and k > 0 the NLOS paths). For each NLOS
path, there is a scatterer with unknown location sk , for which
we define dk,1 = ∥sk−q∥2 and dk,2 = ∥p−sk∥2. We now intro-
duce the channel model, under a frequency-dependent array
response [11], suitable for wideband communication (with
fractional bandwidth B/ fc up to 50%). Assuming K +1 paths
and a channel that remains constant during the transmission
of G symbols, the Nr × Nt channel matrix associated with
subcarrier n is expressed as

H[n] = ARx[n]$[n]AH
Tx[n], (1)

for response vectors

ATx[n] = [aTx,n(θTx,0), . . . , aTx,n(θTx,K )], (2)

ARx[n] = [aRx,n(θRx,0), . . . , aRx,n(θRx,K )], (3)

and

$[n] =
√

Nt Nr

× diag
{

h0√
ρ0

e
− j2πnτ0

NTs , . . . ,
hK√
ρK

e
− j2πnτK

NTs

}
, (4)

for path loss ρk and complex channel gain hk , respectively, of
the k-th path. For later use, we introduce h̃k = √

(Nt Nr )/ρkhk
and γn(hk, τk) = h̃ke− j2πnτk/(NTs ).

The structure of the frequency-dependent antenna steering
and response vectors aTx,n(θTx,k) ∈ CNt and aRx,n(θRx,k) ∈
CNr depends on the specific array structure. For the case of a
uniform linear array (ULA), which will be the example studied
in this paper, we recall that (the response vector aRx,n(θRx,k)
is obtained similarly)

aTx,n(θTx,k)

= 1√
Nt

[e− j Nt −1
2

2π
λn

d sin(θTx,k ), . . . , e j Nt −1
2

2π
λn

d sin(θTx,k)]T,

(5)

where λn = c/(n/(NTs ) + fc) is the signal wavelength at the
n-th subcarrier and d denotes the distance between the antenna
elements (we will use d = λc/2). We note that when B ≪ fc,
λn ≈ λc, and (5) reverts to the standard narrow-band model.

C. Received Signal Model

The received signal for subcarrier n and transmission g,
after CP removal and fast Fourier transform (FFT), can be
expressed as

y(g)[n] = H[n]F(g)[n]x(g)[n] + n(g)[n], (6)

where n(g)[n] ∈ CNr is a Gaussian noise vector with zero
mean and variance N0/2 per real dimension. Our goal is
now to estimate the position p and orientation α of the MS
from {y(g)[n]}∀n,g . We will first derive a fundamental lower
bound on the estimation uncertainty and then propose a novel
practical estimator.

III. POSITION AND ORIENTATION ESTIMATION:
FUNDAMENTAL BOUNDS

In this section, we derive the FIM and the Cramér-Rao
bound (CRB) for the estimation problem of position and
orientation of the MS for LOS, NLOS, and OLOS. To simplify
the notation and without loss of generality, we consider the
case of G = 1, i.e., only 1 OFDM symbol is transmitted.

A. FIM Derivation for Channel Parameters

Let η ∈ R5(K+1) be the vector consisting of the unknown
channel parameters

η =
[
ηT

0 , . . . , ηT
K

]T
, (7)

in which ηk consists of the unknown channel parameters
(delay, AOD, AOA, and channel coefficients) for the k-th path

ηk =
[
τk, θ

T
k , h̃T

k

]T
, (8)

where h̃k = [h̃R,k, h̃I,k]T contains the real and imaginary parts
defined as h̃R,k and h̃I,k , respectively, and θ k =

[
θTx,k, θRx,k

]T.
Defining η̂ as the unbiased estimator of η, the mean squared

error (MSE) is bounded as [38]

Ey|η
[
(η̂ − η)(η̂ − η)T

]
≽ J−1

η , (9)

in which Ey|η[.] denotes the expectation parameterized by the
unknown parameters η, and Jη is the 5(K + 1) × 5(K + 1)
FIM defined as

Jη ! Ey|η

[
−∂2 ln f (y|η)

∂η∂ηT

]
, (10)

where f (y|η) is the likelihood function of the random vector
y conditioned on η. More specifically, f (y|η) can be written
as [39]

f (y|η) ∝ exp

{
2

N0

N−1∑

n=0

ℜ{µH[n]y[n]} − 1
N0

N−1∑

n=0

∥µ[n]∥2
2

}
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[1] A. Shahmansoori et al., “Position and Orientation Estimation through Millimeter Wave MIMO in 5G Systems,” IEEE Trans. Wireless Commun. , March 2018.
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Summary of this approach

Coarse channel 
estimation using 

DCS-SOMP

MmWave
RX signal Fine channel 

estimation using 
SAGE

Conversion to 
position and 

rotation angles

- Non band-limited channel
- Fully digital architecture at the RX (65 antennas at the device)
- High complexity
- Evaluation with an indoor localization, only short distance (4m), static channel

[1] A. Shahmansoori et al., “Position and Orientation Estimation through Millimeter Wave MIMO in 5G Systems,” IEEE Trans. Wireless Commun. , March 2018.
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Results in an indoor scenario
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Fig. 5. RMSE in dB scale plotted against received SNR for rotation
angle (top) and position (bottom) in the LOS. The red lines show the
corresponding bounds.

Fig. 6. The evolution of RMSE of TOA and AOA/AOD for the LOS
(left column) and the NLOS (right column) paths at SNR = −5 dB, 0 dB.
The red lines with the same markers show the bounds.

Performance in OLOS: Finally, the performance in the
OLOS case for three scatterers located at sk [m] = [1.5, 0.4 +
0.5(k −1)]T for k = 1, 2, 3 is investigated in this section using
two different initializations of the rotation angle: one with grid
resolution !α [rad] = 0.01 and one with !α [rad] = 0.05. For
both, we set αm [rad] = 0.5. Fig. 9 shows the performance
of the RMSE with respect to the received SNR for position
and rotation angle estimation. The proposed estimation method
approaches the bound even for the initialization with the
resolution !α [rad] = 0.05. However, the performance of the

Fig. 7. RMSE in dB scale for the NLOS plotted against received SNR
for TOA and AOA/AOD in the presence of a scatterer located at sk [m] =
[1.5, 0.4]T. The red lines show the corresponding bounds.

Fig. 8. RMSE in dB scale for the NLOS plotted against received SNR for
rotation angle (top) and position (bottom) in the presence of a scatterer located
at sk [m] = [1.5, 0.4]T. The red lines show the corresponding bounds.

estimation algorithm is dependent on the resolution of the grid
of points !α. In particular, a finer grid for the rotation angle
leads to better initial estimates and thus a lower final RMSE.
For SNR ≈ −10 dB the RMSE of position and rotation angle
approach the corresponding bounds. We note that the OLOS
values, for a fixed SNR, are significantly higher in the OLOS
than in the NLOS case.

Unknown Conditions: To analyze the application of the
algorithm when the propagation conditions are unknown, we
consider the case where there are three scatterers and the
LOS path is blocked, that is, the OLOS condition. Starting
with the wrong assumption that the path with the shortest
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OLOS case for three scatterers located at sk [m] = [1.5, 0.4 +
0.5(k −1)]T for k = 1, 2, 3 is investigated in this section using
two different initializations of the rotation angle: one with grid
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estimation algorithm is dependent on the resolution of the grid
of points !α. In particular, a finer grid for the rotation angle
leads to better initial estimates and thus a lower final RMSE.
For SNR ≈ −10 dB the RMSE of position and rotation angle
approach the corresponding bounds. We note that the OLOS
values, for a fixed SNR, are significantly higher in the OLOS
than in the NLOS case.

Unknown Conditions: To analyze the application of the
algorithm when the propagation conditions are unknown, we
consider the case where there are three scatterers and the
LOS path is blocked, that is, the OLOS condition. Starting
with the wrong assumption that the path with the shortest

LOS NLOS

For SNR=0 dB, position estimation error in the order of 5 cm 
for  LOS and 1cm for NLOS

Maximum distance between BS and device of 4 m, B=100 MHz, fc=60 GHz, N=20 
subcarriers, Nt=65 antennas, Nr=65  antennas, up to 3 scatterers
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The challenge
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A realistic mmWave MIMO architecture

Baseband
Precoding

Baseband
Combining

1-bit
ADCADC

1-bit
ADCADC

RF
Chain

RF
Chain

Baseband
Precoding

Baseband
Precoding

1-bit
ADCDAC

1-bit
ADCDAC

RF
Chain

RF
Chain

RF 
Beam-

forming

RF 
CombiningH[k]

FBB[k] WBB[k]WRFFBB

We consider a hybrid mmWave MIMO architecture operating at 
mmWave to reduce power consumption

Position and orientation has to be estimated from the received 
signal in a multidevice case 
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The data set

Ray tracing set up (Wireless Insite) already 
developed to generate a data base of channel 
realization and associated P/O of devices in an 

emulated factory environment 

fc=60GHz, Bandwidth= 1GHz

Room Size: 120 m x 60 m x 10 m
6 Windows (glass), 2 Doors
Objects:
7 boxes made of metal, 6 boxes made of 
wood, with sizes around 2m x 2m x2m

Test: we will provide a set of received signals and 
corresponding precoders and combiners 

Access points on the ceiling:  
6 x 3 grid (20 m spacing),
4 x 2 grid (30m spacing)
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Our preliminary results

SNR=0dB Ntr=60

Nt=16, Nr=64, RF chains: Lrf=Lrf=2

[1] W. Zheng and N. González-Prelcic, "Joint Position, Orientation AND Channel Estimation in Hybrid mmWave MIMO Systems," 2019 53rd Asilomar Conference on 
Signals, Systems, and Computers, Pacific Grove, CA, USA, 2019, pp. 1453-1458.
[2] W. Zheng and N. Gonzalez Prelcic, “Multidevice mmWave localization in a factory environment: a hybrid data and model driven approach”, under preparation, 2021. 
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