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Opportunities for DL in PHY Comms

iy

Why Deep Learning for comms:

« Address mathematically non-tractable problems

« Learning-based approaches to reduce complexity of known signal
processing solutions

Comms particular challenges:

* Need new comms-oriented NN loss-functions / architectures
* Limited online training

* NN complexity — need lightweight and hardware-friendly NNs

Opportunities in the Comms domain:
* Good model-based solutions exist — good starting points
* Develop hybrid model-based + data-driven approaches
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LeanCom

Overview

g LeanCom Objectives
UCL Duke 1. Establish a DL framework specifically tailored for
wireless communications,
NEC

&u wcwmooges 2. PHY layer transceiver designs based on NN training and
HUAWEI APULT optimisation - mathematically complex communication
CATAY gl scenarios,

Gl commnet 3. Address low-cost, low-specification devices by
hardware-efficient DL-based transceivers,

4. Demonstrate DL-inspired communications by proof of
concept experiments.
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Outline

« Technical Highlights - Application examples
— Deep Learning for CSI relaxation
— DL-Comms with Hardware-Friendly Neural Networks
— DL for Radar-Assisted Vehicular Networks
— DL for Fixed Wireless Access

— Joint Precoding and CSI sparsification

« Further Opportunities for DL in Communications
— Net-Zero Energy Communications

— Integrated Sensing and Communications



Technical Highlights

From CSI based to Location based
Data-Driven Transmission



Technical Highlights G

RIS aided MEC: Channel-Information based — location based

UE’s — Compute locally

computational
task — Offload to AP / MEC

z Reconfigurable
Intelligent Surface (RIS)

(X=,0,HR)

L « Learning of: UE Energy Allocation +
RIS precoding + AP combining

Close to optimization-based solution
with only UE location information,
dispensing of channel estimation

Deficated Control Channel
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X. Hu, C. Masouros, K. K. Wong, “Reconfigurable Intelligent Surface Aided Mobile Edge Computing: From Optimization-
Based to Location-Only Learning-Based Solutions”, IEEE Trans Commes, vol. 69, no. 6, pp. 3709-3725, June 2021



Problem Set-up h

B Total energy available at the n-th UE: £x, 7 4
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Optimization Based Approach h

Total CTB maximization problem

'/ """""" Y ., | ® Non-convex optimization problem

1 (P0) ;%;}X‘p > (R (a,wn, #) + Ri*(an))i | ® Block coordinate descending (BCD)

1 S p=1 | . . . o=
I > RIS reflecting coefficients design{ ¢ ;
: s.t. a, €1[0,1], Vn e N, : _ g _ _ g<I)
l 6ul = 1. Vn e N : > Receive beamforming designi{w /
N O s A > Energy partition optimization{a

» Sloved by breaking into sub-problems for the optimization of a, W, ¢
* W can be obtained in closed form for given a, ¢
« Solved with Alternating Optimization and Block Coordinate Descend (BCD)

4} BCD optimization algorithm Effective solution with guaranteed convergence.
0. High computational complexity: O(L(L; K® + Lz N?3®)) Nusers, KRIS elements

€4 Online implementations Reduce the computational complexity )

Learning  with {Ofﬂine Training: Emulating the BCD algorithm!

DNNS!
’ Online Inference: With significantly reduced complexity! v



Learning-Based Approach:

Usmg full CSI

' without LoS direct links

5 ' between UEs and AP. .
: : Channel |
=R : — Coefficients |
Input .~ DNN-CSI
Channel
: Coefficients x Obtaining ¢ and a (}’)

Fig. 5: The architecture for obtaining the solutions of {¢,a,W} with the CSI-
based DNN-CSI.
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_____________ Obtaining gand a (y) /) VN

Fig. 7: The architecture for obtaining the solutions of {¢,a,W} with the
location-only DNN-Loc1 and DNN-Loc2.

e Removing pilot channel estimation and feedback

: e Easier to implement with further reduced complexity
with strong LoS direct links between 8
UEs and AP.



Robustness and Complexity Reduction

Practical cases with input feature uncertainty

> CSI-based DNN: X = x+Ax, where Ax ~ N(0,0%,)

> Location-only DNNs:Z = z + Az, where Az ~ N (0,0%,)

Perfect CS|

Imperfect CS|

How much

complexity can be
reduced through

deep learning
methods?

1

TABLE V
PROCESSING TIME OF THE PROPOSED ALGORITHMS
Parameter DNN-CSI | DNN-Locl | DNN-Loc2
Trainable parameters 1,632,288 | 702,208 186,304
Training samples (x,y) (z,¥1) (z,y2)
Training time 57426 h |33504h |1.3979h
Jesting time __ _ 03883 s 102418 s 1010255 _
r‘éverage inference time 38.83 us | 24.18 us 10.25 pus
Training samples (x,y) (z,y1) (z,y2)
Training time 6.0345h [3.5123h |1.4862h
Testing time __ _ ______|04015 s 02568 s _ 0.1156s _
‘ Average inference time ot 4015 s | 25.68 s | 11.56 s ]
1 Average BCD Running Time 287 s I

Average running time for BCD Optimization Algorithm (s)
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Fig. 8. The average running time per
realization vs the number of UEs (N).

4 Running time reduced to 1/10° of BCD;

€ Location-only DL is more lightweight;
€ Uncertainty increases complexity;



Simulation Results

Scenario (b) with strong LoS direct links

o Optimization based, CSl learning-based, location based
x10 . ‘ . . «1010 2

e —e— BCD-Optimized Solution ' ' [
8|~ A - DL CSI-Based

==u== DL CSI-Based Uncertainty
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Scenario (a) without LoS direct links
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Total completed task-input bits (TCTB) of UEs
Total completed task-input bits (TCTB) of UEs

0.4 =-#=-=DL CSI-Based Uncertainty 0.4%¥ 1
—&— Direct Offloading-No RIS ~—4— Direct Offioading-No RIS
0.2 —&— 7T Receive Beamforming 0.2 —— 7ZF Receive Beamforming
0 —— Equal Energy Allocation ol | 1 —— Equal Energy Allocation
2 4 6 8 10 12 2 4 6 8 10 12
M M

The TCTB of UEs versus the number of AP’s antennas Mwith NV = 8.

€ Significant performance improvement of BCD vs benchmarks;
€ A close match between the BCD algorithm and the CSl-based learning method;

€ Location-only learning method can achieve excellent performance when strong
LoS direct links are available;

€ High robustness and generalizability;
10



Technical Highlights

Hardware Friendly NNs for MIMO



1. Deep Learning for Multi-antenna detection

Transmitter

Channel

Receiver

Detection

Receiver

>

Classical Approach

Maximum likelihood
Sphere detector
SIC

Linear (ZF, MMSE)

DL-based Approach

>



Complexity-scalable NNs for Multi-antenna detection

Complete Weights Dot Product Partial Weights Dot Product

—>

Full Layer Before Scaling

)

Unused/Attenuated Layer Weights

Significant Layer Weights

Bi-(Wiz1) + Bo-(Wazp) + B3-(Wsz3)

» Scaling of ‘non-significant’ weights to
reduce dimension/complexity of NNs

* Close to optimal performance with less
than 50% of weights

Bit Error Rate

\ =¥— WeSNet-HF (at 12 dB)
\ —— WeSNet-L (at 12 dB)
\ —e— WeSNet-HF (at 14 dB)
10-31 *‘l ‘# =+== WeSNet-L (at 14 dB)
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1L Complexity / Hardware Friendly

A. Mohammad, C. Masouros, |I. Andreopoulos, “Complexity-Scalable Neural Network Based MIMO Detection
With Learnable Weight Scaling”, IEEE Trans. Comm:s., vol. 68, no. 10, pp. 6101-6113, Oct. 2020
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2. Deep Learning for Multi-antenna precoding

Classical Approach

Transmitter

S Precoding

DL-based Approach

Transmitter

X i

u
= 2
=

Channel

Receiver

S

Optimization based
Sphere encoding
THP

Linear (ZF, MMSE)



Symbol Level Precoding (SLP)

Key Concept: Exploitation of green interference power

BPSK

)y

a

PSK constellations and constructive — destructive
interference sectors

Re

40

10-2

SLP Power Minimization
min||w||?
w

s.t. [Im(hfwe/(-¢D)|

< (Re(hiTwej(‘¢i)) — w/I‘l-a)o) tan ¢

SNR per Tx antenna for uncoded SER

C. Masouros, M. Sellathurai, T. Ratnarajah, “Vector Perturbation Based on Symbol Scaling for Limited Feedback MIMO Downlinks”, IEEE
Trans. Sig. Proc., vol. 62, no. 3, pp. 562-571, Feb.1, 2014

C. Masouros and G. Zheng, “Exploiting Known Interference as Green Signal Power for Downlink Beamforming Optimization”, IEEE Trans.
Sig. Proc., vol.63, no.14, pp.3668-3680, July, 2015

((G))

Mobile Unit
(M)

Base Station (BS) Mobile Unit
(MU)

Up to 10x Power Reduction

——Zero forcing precoding
—&—Interference exploitation precoding

e
L/

Il ]
2 4 6 8 10 12 14

Number of users = number of Tx antennas



Data-Driven Based SLP (SLP-DNet)

Power Minimization min  ||w |
. 2 {Wl
min || wl|
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A. Mohammad, C. Masouros, I. Andreopoulos, “A Memory-Efficient Learning Framework for Symbol Level
Precoding with Quantized NN Weights”, IEEE Trans. Comms., under review



Data-Driven Based Cl — NN Quantization

Quantized NN weights

C,
Cy
Cy

Cy

1 ifW>0 .
Binary (SLP-DBNet): B = sign(W) = e MEMIEI GO Ao
—1 otherwise, :
Complexity
Ternary (SLP-DQNet): +1 L, ifW>4 /Hardware Friendly
B:=<0 ,if[W|<s

-1 it W < =9,
Stochastic quantization . -
(SLP-DONet): B, — +1 with probability p = p(W)

—1 with probability 1 — p,

Weight Tensor/Matrix Quantization Error Stochastic Division Mixed-Precision Weight Matrix

rsy = 0.5 (stochastic quantization ratio)

0.85 |—1.50] 0.25 | 1.25 0.025 /—\ 1 -1 1 1
Quantized rows
05 | —08]|—-1.5]0.75 * 0.5 J 1 -1 -1 1
—_—
. Poi f
~1.0[095 | 0.5 |-0.8 2 | Pointor o ~1.0 | 095 | 0.5 |-0.8
Full-Precision
1.1 | 0.65 |-1.2 | 1.25 0.2 1.1 | 0.65 |-1.2| 1.25 rows

15t selection: C7 is chosen 22 gelection: C2 is chosen




Numerical Results — PSK, Quantization Ratio: 50% of NN weights

Average Transmit Power

x10*

> Conventional Block Level Precoding
=—8— SLP Optimization-Based
=-p-=SLP-DNet
—— SLP-DBNet
==#==SLP-DTNet
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==-=S[ P-DSQTNet

i _ 1
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0.15
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Complexity vs K, QPSK, N; = 4

Data-driven (SLP-DNet) performance very close to optimal SLP.
Some losses with Quantization, less so with Stochastic Quantization.
Reduction down to 40% complexity per optimization.



Technical Highlights

Radar-assisted Vehicular Network



Efficient use of spectrum

Integrated Sensing and Communications (ISAC)

Spectrum Sharing — Dual Transmission 8 users — 3 targets

-
|

Lo |gh L Target

Power peX|ty
DUAL
TRANSMISSION Sensing

0.5 | ennas

o
©
T

Joint DFRC 24 antennas

Radar probability of detection P

Radar Comms
0.85
m/ : Trade-off
16 antennas
08 '
DUAL-FUNCTIONAL 0.75

ACCESS POINT g _ 2.6 2.8 3 3.2 3.4 3.6
communication Comms average achievable rate (bps/Hz/user)

——— Comms =
Smart-cities sensing through 5G A/ \\»
dense cellular infrastructure Radar

N bart of UDRC Pro Incident / . High-speed
arto roject nciaen / AR Coverage
“’\va Mar 2019 — Dec 2021 (£1m) detection | W~

Marie Curie Fellowship R

Nov 2018 — Oct 2020 (£160K) _ _
Multi-user Comms Vehicular DFRC

$IEEE C,',E,E,Esoc ISAC Integrated Sensing and Communication Emerging Technology Initiative

IEEE Communicati



Comms-based Beam Training dh

Beam Uplink
- Training Feedback
- Data Block - Data Block - Data Block
//@ X )
V N W &

i
v
A % Tradeoff: estimation
accuracy vs signalling

overhead: 1 pilots

S LLLLLS L] T beam accuracy
T BF gain and SNR
RSU RSU 1 overhead and latency

1. RSU transmits with different AoA, to scan the angular interval of interest

2.User 1) measures signal strength and 2) feeds back the SNR / beam index

3.RSU identifies a narrower angular interval and scans with narrow beams
-y, User 1) measures signal strength and 2) feeds back the SNR / beam index

A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, "Channel estimation and hybrid precoding for millimeter wave cellular
systems," IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 831-846, 2014



Radar-assisted Vehicular Network:

Comms served by Sensing: Radar tracking or Comms beam-steering

é cho Receive array
' % RSU

Transmit array

Advantages of DFRC Signalling:

No dedicated downlink pilots are needed;
No uplink feedback is needed;

» No feedback overhead/errors

* No quantization errors

The whole downlink frame can be
used for tracking

Significant matched-filtering gain over
conventional beam tracking

= Assumptions: LoS channel, straight road, parallel mMIMO antenna arrays - AOA

equals to AoD

m  Separate Rx array, inc RF isolator



System Model - Signal Model

i State transition model

Xp =& (Xpn_1) + wn

(0, =0,,_1 + d;ilvn_lAT sinf,, 1 + we.n,
dpn = dp—1 — V1 AT cos 0y 1 + Wa.n,

Tx beam 6?” 2 Up = Up—1 + Wy ns

_11 __________________________________________ \Bn — Bn—l (1 + dr_bilvn—lAT COS Qn—l) + Wa,n,
(L1117

Radar measurement model
ry (t) = Ry pnﬁnejgmuntb (Qn) aH (Gn) fnsn (t — Tn)‘i'z’n, (t)
‘ matched filtering

Communication model

rn—ﬁ vV Gprb (6,,) Q}f + Zon
) 2d,,
={{Tn="—"""T%n Round-trip delay
Tx: f, =a (9n|n—1) Rx: w, =1 (9n|n—2) fD .= QU’”’ COSfC + Zfm Doppler offset
k ? ?

F. Liu, W. Yuan, C. Masouros and J. Yuan, "Radar-Assisted Predictive Beamforming for Vehicular Links: Communication
Served by Sensing", IEEE Trans. Wireless Commun., vol. 19, no 11, pp. 7704-7719, Nov. 2020



Prediction Approach - Model-Based Bayesian Learning

[ Evoluti
Beyond EKF Factor graph representation volution
Observation Evolution
T —— e~ pemmeneeee- | | e : Model
Rx beam HA”W""‘,;,.;" _—1 —A_C.Il:—- Th—-1 @—1 ) Un:I/‘ : ¥n—1 : @-1 ﬁn—l
—Pd s g = Transition L :

Txbeam 4, gy Rxbeamb, ., Probabilities P83
7 Tx beam é”_l‘”_l . c S

Y /., . WYWnln—1 Dnin—1 . § % Pnin—1 Hnln—1
11777775 observations - i 8=

delay 7kn=—"—+2r, and 5
y T.i‘l /;H I—"‘!‘I\ i }"n /_F‘;?’I nﬂ?’l
20k €08 O n fo ;
Doppler 7k = . R R S— | I [ S— |
{Ei, é,\’?’,,@} =arg max p(d,0,v,Bly.7,v),
d.6.v.8 KN,-1 Ki—-N
 Predict the motion parameters of vehicles through
maximum a posteriori (MAP) estimator ‘Observation @ @
o q IR . . Model

« Represent a posteriori distribution through factor o - / \ o

graph framework and message passing Vn yn'

- Higher estimation accuracy is guaranteed by —

exploiting second-order Taylor approximation

N, variables

W. Yuan, F. Liu, C. Masouros, J. Yuan, D. W. K. Ng, N. Prelcic, “Bayesian Predictive Beamforming for Vehicular Networks: A
Low-Overhead Joint Radar-Communication Approach”, IEEE Trans. Wireless Comms., vol. 20, no. 3, pp. 1442-1456, March 2021



Numerical Results - DFRC vs Comms only

25

- - N
o 4] o

Achievable Rate (bps/Hz)

[&)]

, -
BB N =64, vo= 18m/s

Time (ms)

EKF-Commes-only: poor angle estimation at RSU crossing point — suffering data rate

Auxiliary Beam Pair (ABP) tracking: at RSU crossing point the correct beam will unlikely fall into
angle search interval — beam goes beyond the search space and is not recovered

EKF-DFRC: Minimal disruption in the rate

F. Liu, W. Yuan, C. Masouros and J. Yuan, "Radar-Assisted Predictive Beamforming for Vehicular Links: Communication Served by
Sensing", IEEE Trans. Wireless Commun., vol. 19, no 11, pp. 7704-7719, Nov. 2020

F. Liu and C. Masouros, "A Tutorial on Joint Radar and Communication Transmission for Vehicular Networks - Part II: State of the Art and
Challenges Ahead", IEEE Commun. Lett., vol. 25, no. 2, pp. 332-336, Feb. 2021 - EiC Invited Paper
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Numerical Results e

Single vehicle tracking - Factor graph vs. EKF
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CDF
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FC-based appoarch, 128 antennas
————— Feedback 1 pilot, 128 antennas
----- = EKF [24], 128 antennas

:+“|== = = FC-based appoarch, 64 antennas
—— Feedback 1 pilot, 64 antennas
—-+-—EKF [24], 64 antennas

0.02 0.03 0.04 0.06

Angle error (°)

0.05 0.07

Better misalignment probability and angle tracking for smaller BW

» The factor graph (FC) based approach outperforms the EKF, and the comms-only
feedback based techniques in angle and velocity tracking.

W. Yuan, F. Liu, C. Masouros, J. Yuan, D. W. K. Ng, N. Prelcic, “Bayesian Predictive Beamforming for Vehicular Networks: A
Low-Overhead Joint Radar-Communication Approach”, IEEE Trans. Wireless Comms., vol. 20, no. 3, pp. 1442-1456, March 2021



Technical Highlights

Beam prediction for Fixed Wireless
Access Links



Technical Highlights G

Beam prediction for Fixed Wireless Access Links

0(0.d,. Hy)
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« Beam angle prediction based on
geometric models

« Beam alignment with relatively small
#training samples

Elevation Angle
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J. Zhang, C. Masouros, “Learning-Based Predictive Transmitter-Receiver Beam Alignment in Millimeter Wave Fixed
Wireless Access Links”, IEEE Trans Sig. Proc., early access on IEEExplore
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Technical Highlights

Joint Precoding and Channel
Sparsification



Technical Highlights b

Joint Precoding and Channel Sparsification

Constructive interference

BPSK

QPSK

-1

min  [[Fd|j3 + plld]
s:t; ’Im(ﬁEFde_jg“) = <Re(f15Fd€_j€“) - ’Yu)'
tan(w/Ky,), (Yu € U).

 Two things at once: a) channel
sparsification, b) Precoding for
interference exploitation

* Reduced CSI approach, close to full
CSl based precoding

Q

Throughput (bits/channel use)

6.0 1

5.5 1

5.0 1

4.5 1

4.0

R

Im
8PSK T

—»— JoPiSLP-SMB
—e— JoPiSLP-CBL
—— JoPiSLP-PAS
—— FD-SLP [25]
—&— FS-SLP [34]

2 3 4

5

6

7 8 9

Number of CSI quantization bits

J. Zhang, C. Masouros, “A Unified Framework for Precoding and Pilot Design for FDD Symbol-Level Precoding”, IEEE

Trans Comms., under review
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Further Research Directions

« Complex problems with inaccurate modelling

* Problems with complex modelling, difficult to solve analytically
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Net-Zero Energy Communications

Energy-autonomous Portable Access-Points

¥ CO? emissions and OPEX - Renewable Sources + Energy Harvesting
¥ Power grid infrastructure - Portable Base Stations
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Net-Zero Energy Communications

Energy-autonomous Portable Access-Points

Learning based Solutions:
» For complex optimization problems in balancing energy harvesting vs
storage vs consumption

« To address complex modelling of batteries / photovoltaics / ... /

« UAV trajectory optimization
* Online trajectory adaptation based on comms / energy /
navigation /... /... metrics

* Reinforcement learning approaches seem promising



Efficient use of spectrum

Integrated Sensing and Communications (ISAC)
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Efficient use of spectrum

Integrated Sensing and Communications (ISAC)

Learning based Solutions:
* For complex optimization problems in joint waveform design
« To address complex joint comms — radar metrics

« Complex target / user scenarios

* Receive processing for ISAC signals
« Joint target detection and data detection — DL for complex

environments
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