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Why Deep Learning for comms:

• Address mathematically non-tractable problems

• Learning-based approaches to reduce complexity of known signal 

processing solutions 

Comms particular challenges:

• Need new comms-oriented NN loss-functions / architectures

• Limited online training

• NN complexity – need lightweight and hardware-friendly NNs

Opportunities in the Comms domain:

• Good model-based solutions exist – good starting points

• Develop hybrid model-based + data-driven approaches

Opportunities for DL in PHY Comms



LeanCom

Overview

Neural-Network (NN) 
Based Transceivers

LeanCom Objectives

1. Establish a DL framework specifically tailored for 
wireless communications, 

2. PHY layer transceiver designs based on NN training and 

optimisation - mathematically complex communication 
scenarios,

3. Address low-cost, low-specification devices by 
hardware-efficient DL-based transceivers,

4. Demonstrate DL-inspired communications by proof of 
concept experiments.

Duration: Oct 2019 – Sep 2022, 

Value: £860k



Outline

• Technical Highlights - Application examples

– Deep Learning for CSI relaxation

– DL-Comms with Hardware-Friendly Neural Networks

– DL for Radar-Assisted Vehicular Networks

– DL for Fixed Wireless Access

– Joint Precoding and CSI sparsification

• Further Opportunities for DL in Communications

– Net-Zero Energy Communications

– Integrated Sensing and Communications
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Technical Highlights

From CSI based to Location based 
Data-Driven Transmission
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RIS aided MEC: Channel-Information based → location based 
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X. Hu, C. Masouros, K. K. Wong, “Reconfigurable Intelligent Surface Aided Mobile Edge Computing: From Optimization-
Based to Location-Only Learning-Based Solutions”, IEEE Trans Comms, vol. 69, no. 6, pp. 3709-3725, June 2021

Technical Highlights

• Learning of: UE Energy Allocation + 

RIS precoding + AP combining

• Close to optimization-based solution 

with only UE location information, 

dispensing of channel estimation

Reconfigurable 

Intelligent Surface (RIS)

UE’s 

computational 

task

→ Compute locally

→ Offload to AP / MEC
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◼ Total energy available at the n -th UE:

◼ Energy for computation offloading:     J

◼ RIS coefficient matrix: 

➢ with phase shifts 

◼ Estimated signal:

◼ Completed task bits (CTB) with offloading:

◼ Energy for local computing:               J 

◼ CTB with local computing: :Required CPU cycles/bit

with

: Effective capacitance

coefficient

𝑎𝑛

𝝓

𝒘𝑛

Problem Set-up



Optimization Based Approach

7

◼ Non-convex optimization problem

◼ Block coordinate descending (BCD)

➢ RIS reflecting coefficients design

➢ Receive beamforming design

➢ Energy partition optimization

Total CTB maximization problem 

• Sloved by breaking into sub-problems for the optimization of 𝒂,𝑾,𝝓

• 𝑾 can be obtained in closed form for given 𝒂,𝝓

• Solved with Alternating Optimization and Block Coordinate Descend (BCD)

◆ BCD optimization algorithm Effective solution with guaranteed convergence.

◆ High computational complexity:  N users, K RIS elements

◆ Online implementations       Reduce the computational complexity 

Learning with
DNNs!

?
Offline Training: Emulating the BCD algorithm!

Online Inference: With significantly reduced complexity!
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Fig. 5: The architecture for obtaining the solutions of {ϕ,a,W} with the CSI-
based DNN-CSI.

without LoS direct links 
between UEs and AP. 

Learning-Based Approach:

Using full CSI

Fig. 7: The architecture for obtaining the solutions of {ϕ,a,W} with the
location-only DNN-Loc1 and DNN-Loc2.

with strong LoS direct links between 
UEs and AP.

• Removing pilot channel estimation and feedback

• Easier to implement with further reduced complexity

Using Location-only
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Robustness and Complexity Reduction

Fig. 8. The average running time per 

realization vs the number of UEs (N).

How much 

complexity can be 

reduced through 

deep learning 

methods?

◼ Practical cases with input feature uncertainty

➢ CSI-based DNN:

➢ Location-only DNNs: 

◆ Running time reduced to 1/106 of BCD;

◆ Location-only DL is more lightweight;

◆ Uncertainty increases complexity; 

CSI based

Location-only



Simulation Results
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The TCTB of UEs versus the number of AP’s antennas M with N = 8.

Scenario (a) without LoS direct links
Scenario (b) with strong LoS direct links

◆ Significant performance improvement of BCD vs benchmarks;

◆ A close match between the BCD algorithm and the CSI-based learning method;

◆ Location-only learning method can achieve excellent performance when strong 

LoS direct links are available;

◆ High robustness and generalizability;

Optimization based, CSI learning-based, location based



Technical Highlights

Hardware Friendly NNs for MIMO
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1. Deep Learning for Multi-antenna detection

Channel Detection

Transmitter Receiver

NN

Receiver

• Maximum likelihood

• Sphere detector

• SIC

• Linear (ZF, MMSE)

• …

Classical Approach

DL-based Approach

𝑠 Ƹ𝑠

Ƹ𝑠
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Complexity-scalable NNs for Multi-antenna detection
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A. Mohammad, C. Masouros, I. Andreopoulos, “Complexity-Scalable Neural Network Based MIMO Detection 
With Learnable Weight Scaling”, IEEE Trans. Comms., vol. 68, no. 10, pp. 6101-6113, Oct. 2020

• Scaling of ‘non-significant’ weights to 

reduce dimension/complexity of NNs

• Close to optimal performance with less 

than 50% of weights

Memory consumption

Complexity           Hardware Friendly



2. Deep Learning for Multi-antenna precoding

ChannelPrecoding

Transmitter
Receiver • Optimization based

• Sphere encoding

• THP

• Linear (ZF, MMSE)

• …

Classical Approach

DL-based Approach

𝑠
x

Ƹ𝑠

Transmitter

𝑠
x

NN



Symbol Level Precoding (SLP)

Key Concept: Exploitation of green interference power
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interference sectors

C. Masouros, M. Sellathurai, T. Ratnarajah, “Vector Perturbation Based on Symbol Scaling for Limited Feedback MIMO Downlinks”, IEEE 

Trans. Sig. Proc., vol. 62, no. 3, pp. 562-571, Feb.1, 2014

C. Masouros and G. Zheng, “Exploiting Known Interference as Green Signal Power for Downlink Beamforming Optimization”, IEEE Trans. 

Sig. Proc., vol.63, no.14, pp.3668-3680, July, 2015

Up to 10x Power Reduction

SLP Power Minimization

𝑠. 𝑡. 𝐼𝑚 𝐡𝑖
𝑇𝐰𝑒𝑗(−𝜙𝑖)
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Data-Driven Based SLP (SLP-DNet)

Unfolding using the Lagrangian → 

regularised loss function:

Power Minimization

A. Mohammad, C. Masouros, I. Andreopoulos, “A Memory-Efficient Learning Framework for Symbol Level 
Precoding with Quantized NN Weights”, IEEE Trans. Comms., under review

𝑠. 𝑡. 𝐼𝑚 𝐡𝑖
𝑇𝐰𝑒𝑗(−𝜙𝑖)
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Data-Driven Based CI – NN Quantization

Quantized NN weights

Binary (SLP-DBNet):

Ternary (SLP-DQNet):

Stochastic quantization 

(SLP-DQNet):

Memory consumption

Complexity

Hardware Friendly



Numerical Results – PSK, Quantization Ratio: 50% of NN weights

BER v.s. SNR, QPSK, 𝐾 = 𝑁𝑡 = 4

• Data-driven (SLP-DNet) performance very close to optimal SLP.

• Some losses with Quantization, less so with Stochastic Quantization.

• Reduction down to 40% complexity per optimization.

Complexity vs K, QPSK, 𝑁𝑡 = 4



Technical Highlights

Radar-assisted Vehicular Network



Efficient use of spectrum 
Integrated Sensing and Communications (ISAC)

Marie Curie Fellowship

Nov 2018 – Oct 2020 (£160k)

Spectrum Sharing → Dual Transmission

Part of UDRC Project

Mar 2019 – Dec 2021 (£1m)
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Comms-based Beam Training

1

2

A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, "Channel estimation and hybrid precoding for millimeter wave cellular 
systems," IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 831–846, 2014

1.RSU transmits with different AoA, to scan the angular interval of interest

2.User 1) measures signal strength and 2) feeds back the SNR / beam index

3.RSU identifies a narrower angular interval and scans with narrow beams

4.User 1) measures signal strength and 2) feeds back the SNR / beam index

RSU

3

4

RSU

Tradeoff: estimation 

accuracy vs signalling 

overhead: ↑ pilots 

↑ beam accuracy 

↑ BF gain and SNR

↑ overhead and latency



Radar-assisted Vehicular Network:

▪ Assumptions: LoS channel, straight road, parallel mMIMO antenna arrays - AoA

equals to AoD

▪ Separate Rx array, inc RF isolator

Advantages of DFRC Signalling:

• No dedicated downlink pilots are needed;

• No uplink feedback is needed;

• No feedback overhead/errors

• No quantization errors

• The whole downlink frame can be 
used for tracking

• Significant matched-filtering gain over 
conventional beam tracking

Comms served by Sensing: Radar tracking or Comms beam-steering



System Model - Signal Model

Radar measurement model

Communication model matched filtering

State transition model

Predictive Beamformers

Rx:Tx:

Round-trip delay

Doppler offset

F. Liu, W. Yuan, C. Masouros and J. Yuan, "Radar-Assisted Predictive Beamforming for Vehicular Links: Communication 
Served by Sensing", IEEE Trans. Wireless Commun., vol. 19, no 11, pp. 7704-7719, Nov. 2020



Prediction Approach - Model-Based Bayesian Learning

W. Yuan, F. Liu, C. Masouros, J. Yuan, D. W. K. Ng, N. Prelcic, “Bayesian Predictive Beamforming for Vehicular Networks: A 

Low-Overhead Joint Radar-Communication Approach”, IEEE Trans. Wireless Comms., vol. 20, no. 3, pp. 1442-1456, March 2021

Beyond EKF
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• Predict the motion parameters of vehicles through 
maximum a posteriori (MAP) estimator

• Represent a posteriori distribution through factor 
graph framework and message passing

• Higher estimation accuracy is guaranteed by 
exploiting second-order Taylor approximation

observations

delay

Doppler

Factor graph representation



Numerical Results  - DFRC vs Comms only

F. Liu, W. Yuan, C. Masouros and J. Yuan, "Radar-Assisted Predictive Beamforming for Vehicular Links: Communication Served by 
Sensing", IEEE Trans. Wireless Commun., vol. 19, no 11, pp. 7704-7719, Nov. 2020

F. Liu and C. Masouros, "A Tutorial on Joint Radar and Communication Transmission for Vehicular Networks - Part II: State of the Art and 
Challenges Ahead", IEEE Commun. Lett., vol. 25, no. 2, pp. 332-336, Feb. 2021 - EiC Invited Paper

• EKF-Comms-only: poor angle estimation at RSU crossing point – suffering data rate

• Auxiliary Beam Pair (ABP) tracking: at RSU crossing point the correct beam will unlikely fall into 
angle search interval – beam goes beyond the search space and is not recovered

• EKF-DFRC: Minimal disruption in the rate

N = 64, v0 = 18m/s
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Numerical Results

• Better misalignment probability and angle tracking for smaller BW

• The factor graph (FC) based approach outperforms the EKF, and the comms-only 
feedback based techniques in angle and velocity tracking.

W. Yuan, F. Liu, C. Masouros, J. Yuan, D. W. K. Ng, N. Prelcic, “Bayesian Predictive Beamforming for Vehicular Networks: A 

Low-Overhead Joint Radar-Communication Approach”, IEEE Trans. Wireless Comms., vol. 20, no. 3, pp. 1442-1456, March 2021

Single vehicle tracking - Factor graph vs. EKF

Beamwidth

FC-based

FC-based



Technical Highlights

Beam prediction for Fixed Wireless 
Access Links



Beam prediction for Fixed Wireless Access Links

28

• Beam angle prediction based on 

geometric models

• Beam alignment with relatively small 

#training samples 

J. Zhang, C. Masouros, “Learning-Based Predictive Transmitter-Receiver Beam Alignment in Millimeter Wave Fixed 
Wireless Access Links”, IEEE Trans Sig. Proc., early access on IEEExplore

Technical Highlights



Technical Highlights

Joint Precoding and Channel 
Sparsification



Joint Precoding and Channel Sparsification

30
J. Zhang, C. Masouros, “A Unified Framework for Precoding and Pilot Design for FDD Symbol-Level Precoding”, IEEE 
Trans Comms., under review

Technical Highlights

• Two things at once: a) channel 

sparsification, b) Precoding for 

interference exploitation

• Reduced CSI approach, close to full 

CSI based precoding
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Further Research Directions
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• Complex problems with inaccurate modelling

• Problems with complex modelling, difficult to solve analytically



Net-Zero Energy Communications
Energy-autonomous Portable Access-Points

CO2 emissions and OPEX

Power grid infrastructure

- Renewable Sources + Energy Harvesting

- Portable Base Stations

- UAVs

Innovative Training Network

Oct 2018 – Sep 2022 (€4.2m)

http://painless-itn.com/
@PainlessITN

Painless ITN

https://www.bing.com/images/search?q=cnrs+logo&id=2085055ACB3054E40BD3E9E53E8423FDB04D9F62&FORM=IQFRBA
http://painless-itn.com/


Net-Zero Energy Communications
Energy-autonomous Portable Access-Points

Learning based Solutions:

• For complex optimization problems in balancing energy harvesting vs 

storage vs consumption

• To address complex modelling of batteries / photovoltaics / … / 

…

• UAV trajectory optimization

• Online trajectory adaptation based on comms / energy / 

navigation /… /… metrics

• Reinforcement learning approaches seem promising



Efficient use of spectrum 
Integrated Sensing and Communications (ISAC)

Marie Curie Fellowship

Nov 2018 – Oct 2020 (£160k)

Spectrum Sharing → Dual Transmission

Part of UDRC Project

Mar 2019 – Dec 2021 (£1m)
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Learning based Solutions:

• For complex optimization problems in joint waveform design

• To address complex joint comms – radar metrics

• Complex target / user scenarios

• Receive processing for ISAC signals

• Joint target detection and data detection – DL for complex 

environments

Efficient use of spectrum 
Integrated Sensing and Communications (ISAC)
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Big thanks!

Thank you
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