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Applications of Human Ambient
Intelligence (Aml)

Radar for Indoor Monitoring ‘
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Why Radar for Human Aml?

e There are a lot of sensors types...

Camera Acoustic Infrared Seismic/Vibration

Q

ge -

* But, radar can sense
- remotely (at a distance, non-contact)
- through-walls, sub-surface
- in the dark (no external light)
- at wider range
- and protects privacy
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Challenges to Aml
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Overview

** Radar Measurements and Pre-Processing

*»* Radar Data Representations

*¢* Micro-Doppler Signature Based Classification

** Approaches for Training Under Low Sample Support

* Transfer learning, unsupervised pre-training
* Training with synthetic data generated by models or GANs

** Physics-Aware Machine Learning

¢ Cross-Frequency Training Challenge
* Dataset and Recent Results
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Range Measurements
\

<= Target
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here
c = speed of light
t = round-trip travel time
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Velocity Measurement

Received signal’s frequency related to radial velocity of target....

2f,v cos 0
Af=

c
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RF Data Representations

Space-time adaptive
processing (STAP)
2D adaptive joint weighting
across antenna element and
pulse number

Synthetic aperture
radar (SAR) imaging
2D matched filtering in
slow and fast time

| PRF
2

FRF
+ 2

Beamforming
1D weighting across
antenna elements

Moving target indication (MTI)
Filtering to remove ground clutter
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Pulse compression Doppler processing
1D matched filtering LD filtering or spectral analysis
across fast-time Target Doppler frequency across slow-time
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DNN Design for RF Applications

Input Representations
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Radar Point Cloud

Range-Doppler Cube
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RF engineers have drawn on
** Computer vision for
— 2D/3D images/videos
*** Speech processing for
— 1D time-series
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Micro-Doppler Signature Classification

Walking Limping Falling Wheelchair Use

30

Tameds

CLASSIFICATION PROCESS

Ia Jl -‘.,Ijtl- l.,l Illr! i FEATURE FEATURE
g R > s el SELECTION CLASSIFICATION

DR

e« Rawl/Qdata e Physical  Dimension Reduction « SVM e Confusion matrix
+ Spectrogram « Speech-Inspired « Filters * kNN
+ Transform-Based « \Wrappers = Bayesian
...and more

Sevgi Z. Gurbuz (szgurbuz@ua.edu)




Approaches for Training
under Low Sample Support

Unsupervised Pre-Training

L Dm-oomyah o

pe - T I i sl o
1o el ™y
O smhal das o o cah el
1. o ] | g E E 1 Tr _—

bl B | e

Liar Ltk
o = .
. it Pecirg Porsrg . [T Bk o m

Facdrg
Erocder Detod o

ImageNet RF Data

R TR e
st - ™ o P P P e
s = B e
E e i 6 ek &
PRl R = A PO
TRy 1

Transfer Learning

Randomly Initialized DNN Pre-Trained on DNN Fine-Tuned on
DNN Data from Domain A Data from Domain B
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Comparison of Unsupervised
Pre-Training with Transfer Learning

Test Accuracy
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M.S. Seyfioglu, S.Z. Gurbuz, “Deep Neural Network Initialization Methods for Micro-Doppler Classification With
Low Training Sample Support, IEEE Geoscience and Remote Sensing Letters, Dec. 2017.
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Physics-Aware Pre-Training:
Synthetic Data Generated from Motion Capture
(MOCAP) Data

 Kinect sensor has RGB and infrared cameras

e Skeleton tracking to emulate radar range
measurements

S tA_tdi
S (n,t) = Zau.rect :
i=1 4

jej[27ﬂrcfd,z+7f7(ffd,z)2]

. GA Po.o,
" (@)U RNLAL T,
G: antennagain A:  wavelength
L,: atmospheric losses L : system losses
P : transmitted signal power T, : system temperature
o,: nhoise standard deviation o,: RCS of each bodypart

B.Erol, C. Karabacak, S.Z. Girbiiz, “A Kinect-Based Human Micro-Doppler Simulator,”
IEEE Aerospace and Systems Magazine, vol. 30, no. 5, May 2015. 13
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Diversified MOCAP

Data augmentation techniques for computer vision [scaling, rotation, translation]
- Generate physically impossible variants of RF data

Physics-Aware Solution: Transform Underlying Skeleton
55 MOCAP Measurements — 32,000 mD Samples
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B.Erol, S.Z. Gurbuz, M.G. Amin, “DNN Transfer Learning from Diversified Micro-Doppler for Motion
Classification,” IEEE Trans. Aerospace and Electronic Systems, vol. 55, no. 5, October 2019.
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Performance Comparisons

DivNet-15:
15-layer residual neural network pre-trained with 32k diversified MOCAP
Fine-tuned with just 474 real RF samples
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S. Z. Gurbuz and M. G. Amin, "Radar-Based Human-Motion Recognition With Deep Learning: Promising
Applications for Indoor Monitoring," in IEEE Signal Processing Magazine, vol. 36, no. 4, pp. 16-28, July 2019. 15
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What if | can’t get MOCAP?

Generative Adversarial Networks
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B.Erol, S.Z. Giirbliz, M.G. Amin, “Motion
classification using kinematically sifted
ACGAN-synthesized radar micro-Doppler
signatures ,” IEEE Trans. Aerospace and
Electronic Systems, Vol. 56, Iss. 4,
pp. 3197 - 3213, January 2020.

Walking

Sevgi Z. Gurbuz (szgurbuz@ua.edu)

disjoint component

should not see
frequencies
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direction of fall

8 progressive fall
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m merged with noise
el = } period of stopping,
not walking

negative Doppler implies
walking away from radar

should not see frequencies
opposing direction of fall
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Just How Inaccurate is the ACGAN?

FALLING

Let’s remove outliers
using a convex hull
defined using PCA

From 40k samples, 9k removed

TF-AlexNet TF-VGGl16 CVAE ACGAN PCA-ACGAN-TOL-1.0 PCA-ACGAN-TOL-0.5

Accuracy  0.765 0.842 0.732 0.825 0.877 0.932

| % | Bending | Falling | Gesture | Kneeling | Reaching | Sitting | Standing | Walking |

Falling
Gesture
Kneeling
Reaching
Sitting
Standing
Walking
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How Can GAN Be Prevented From
Making Errors in Target Model?

Physics-Based Physics-Aware Data-Driven
Models ML Deep Learning
o I Unknown qualities of
enomenology
Some < Dynamic Changes
Sensor Properties Data
in the Environment
Target Model Tractable Target i
: < Target properties
Clutter Model IR
< Sensor Artifacts
No Data Lots of Data
High Knowledge No Physics

18
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Physics-Aware ML Solution for
Human Activity Recognition

We need to integrate our knowledge of human kinematics
into the GAN so variants are generated within physical bounds

The ENVELOPE of the micro-Doppler signature reflects the
¢ Physical bounds on maximum velocity for a given activity,
s Captures periodicities inherent to the motion

Normal Walking Walking on Toes Short Steps Scissor Gait Walking w/Cane

SHSTEP




Multi-Branch GAN with Auxilliary

Envelope

*»» Generator:
» 10 convolutional layers
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Effect of Adding Auxiliary Branch

21
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How Can We Improve Further?

e Let’s Quantify Kinematic Fidelity...

» Curve Matching as similarity metrics
— Dynamic Time Wrapping (DTW)
— Discrete Fréchet Distance (DFD)

» Pearson Correlation: Measure the linear correlation between
two random variables by computing the covariance of the two
variables divided by the product of their standard deviations.

p(A,B) = cov(A, B)

{leﬁB

» It has a value between +1 and -1. A value of +1 is total positive linear
correlation, O is no linear correlation, and -1 is total negative
- linear correlation. 22
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Add Kinematic Metric to Loss Function:
Loss-Regularized (LR) MBGAN

Loss = LosScyitic + V(”VJ?D(X\)”Z) + LOSSPhySiCS
) \ J

| \ i
D(x) —D(G(z)) GradientPenalty T
New term based on
= Xx: Real data instance sensor p.hysics,
= 7 Noise kinematics, etc.

= D(X): Discriminator’s estimate of the
probability that the real data instance x is real

= D(G(z)): Discriminator’s estimate of the
probability that a fake instance is real

i 23
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Results of Adding Kinematic Loss
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M. Rahman, S. Z. Gurbuz and M. G. Amin, “Physics-aware design of multi-branch
GAN for human RF micro-Doppler signature synthesis ,“ in 2021 IEEE International
Radar Conference (RADAR), Atlanta, GA.
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Classification Accuracy

* Real samples: 60 samples per class
(5 classes)

* Synthetic samples: 500 samples/class for each GAN

* Convolutional Autoencoder (CAE)
— Three blocks; each block has 2 convolutional layers
+ concatenation + max pooling

WGAN CAE 86.64%
MBGAN CAE 88.13%
LR-MBGAN CAE 89.83%
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How Can We Exploit
“Datasets of Opportunity” ?

e Different sources of real RF data:

— In an RF sensor network:
e Different frequency
e Different angle
* But observing the same participant
— Similar experiments conducted elsewhere
« Same/different frequency/angle
» Different participants

— RF datasets of motion classes, frequency, angle,
and participants

Sevgi Z. Gurbuz (szgurbuz@ua.edu)
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Cross-Frequency Training of RF Data

Three RF Sensors:
e 77 GHzTIIWR 1443
* 24 GHz Ancortek SDR-KIT
® <10 GHz XeThru X4MO03

WIk-twrds  WIk-awy Pick Bend Sit Kneel

77 GHz




Cross-Frequency Classificiation with
Transfer Learning from VGGnet

J VGG16 net with top layer modification

- Global average pooling followed by 2 fully connected layers

- Dropout: 0.5

- 77 GHz: batch size 8,Learning rate 2e-4, two Dense layers of size 256, Decay 1le-6, Adam Optimizer
- 24 GHz: batch size 32,Learning rate 1e-4, two Dense layers of size 256, Decay 1e-6, Adam Optimizer
- 10 GHz: batch size 8,Learning rate 2e-4, two Dense layers of size 128, Decay 1le-6, Adam Optimizer

10 GHz 14.28

77 GHz 24 GHz 16.66
77 GHz 89.23 Performance degrades
24 GHz 85.57 while training and
10 GHz 15.55 testing with different
77 GHz 11.13 / frequency data
10 GHz 83.00
24 GHz 14.21
77 GHz 9.00
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Cross-Frequency Classification with
Convolutional Auto-Encoder (CAE)

J 11 different classes: ] CAE: Total of 5 layers
- 60 samples per class for 77 & 10 GHz - When decoder removed, 2 dense layers
- 150 samples per class for 24 GHz followed by a soft-max layer added

- Number of filters in each layer: 64
- Filter Size: 3x3 & 9x9 filters are

concatenated

77 GHz 91.5% 77 GHz 77 GHz 83.8%

77 GHz 24 GHz 22.5% 24 6z 10 GHz 10 GHz 81.6%

77 GHz 10 GHz 18.9% 10 GHz 91.8%
24 GHz 24 GHz 74.4% 10 GHz 77 GHz 24.1%

10 GHz 10 GHz 75.5% 10 GHz 24 GHz 18.8%

24 GHz 91.2% 77 GHz 77 GHz 80.0%

24 GHz  24GHz 77 GHz 28.5% 24 GHz 24 GHz 79.1%

10 GHz 40.5%
29
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Cross-Frequency Pre-Training on GAN-
Synthesized Signatures

1 CAE trained on synthetic data, and fine tuned on real data
= 100 vs 20 epochs
* Trained on 77 GHz synthetic data and fine tuned on each sensor
individually
= Testing done on data from all 3 frequencies

Synthetic 77 GHz 77 GHz 77 GHz 85.40%
24 GHz  8.85%
10GHz  7.20%

24 GHz 24 GHz 77.15%
10 GHz 10 GHz 80.80%

1 GANs-based model performs slightly worse
1 Presence of kinematically inaccurate data
1 PCA sifting algorithm not selective enough (remove outliers)
. Similarity among classes like picking up an object, bending causes

GAN to learn biased distribution 20
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Al/ML Challenge Dataset Resources

 Publications and Multi-Media videos of
conference presentations related to this
dataset accessible via

Computational Intelligence for Radar Lab
http://ci4r.ua.edu

31
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http://ci4r.ua.edu/

Thank You!

Sevgi Zubeyde Gurbuz
Assistant Professor

Computationally Intelligence
for Radar (CI4R) Lab

Dept. of Electrical and
Computer Engineering

University of Alabama —
Tuscaloosa

szegurbuz@ua.edu

Visit us at: http://ci4r.ua.edu
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