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Applications of Human Ambient 
Intelligence (AmI)
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Why Radar for Human AmI?
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• There are a lot of sensors types…

Camera Acoustic Infrared Seismic/Vibration

• But, radar can sense
- remotely (at a distance, non-contact)
- through-walls, sub-surface
- in the dark (no external light)
- at wider range
- and protects privacy
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Challenges to AmI
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Overview

 Radar Measurements and Pre-Processing
 Radar Data Representations
 Micro-Doppler Signature Based Classification
 Approaches for Training Under Low Sample Support

• Transfer learning, unsupervised pre-training
• Training with synthetic data generated by models or GANs

 Physics-Aware Machine Learning
 Cross-Frequency Training Challenge

• Dataset and Recent Results
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Range Measurements
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6

Target

• Target range= cτ
2

here
c = speed of light
τ = round-trip travel time
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Velocity Measurement
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radar reflection radar transmission

Received signal’s frequency related to radial velocity of target….
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RF Data Representations
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DNN Design for RF Applications
Input Representations
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Sequential Models

RF engineers have drawn on 
 Computer vision for 

→ 2D/3D images/videos
 Speech processing for 

→ 1D time-series

time

I+jQ
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Micro-Doppler Signature Classification
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Walking Limping Falling Wheelchair Use
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Approaches for Training
under Low Sample Support
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Transfer Learning

Randomly Initialized 
DNN

Training

ImageNet

DNN Pre-Trained on
Data from Domain A

Fine-Tuning

DNN Fine-Tuned on
Data from Domain B

RF Data

Unsupervised Pre-Training
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Comparison of Unsupervised 
Pre-Training with Transfer Learning 
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M.S. Seyfioglu, S.Z. Gurbuz, “Deep Neural Network Initialization Methods for Micro-Doppler Classification With 
Low Training Sample Support, IEEE Geoscience and Remote Sensing Letters, Dec. 2017.
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Physics-Aware Pre-Training: 
Synthetic Data Generated from Motion Capture 

(MOCAP) Data
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• Kinect sensor has RGB and infrared cameras
• Skeleton tracking to emulate radar range 

measurements
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B.Erol, C. Karabacak, S.Z. Gürbüz, “A Kinect-Based Human Micro-Doppler Simulator,” 
IEEE Aerospace and Systems Magazine, vol. 30, no. 5, May 2015.
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Diversified MOCAP

14

Physics-Aware Solution:  Transform Underlying Skeleton
55 MOCAP Measurements → 32,000 mD Samples

Data augmentation techniques for computer vision [scaling, rotation, translation]
→  Generate physically impossible variants of RF data

B.Erol, S.Z. Gürbüz, M.G. Amin, “DNN Transfer Learning from Diversified Micro-Doppler for Motion 
Classification,” IEEE Trans. Aerospace and Electronic Systems, vol. 55, no. 5, October 2019.
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Performance Comparisons
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DivNet-15:  
15-layer residual neural network pre-trained with 32k diversified MOCAP

Fine-tuned with just 474 real RF samples

S. Z. Gurbuz and M. G. Amin, "Radar-Based Human-Motion Recognition With Deep Learning: Promising 
Applications for Indoor Monitoring," in IEEE Signal Processing Magazine, vol. 36, no. 4, pp. 16-28, July 2019.
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What if I can’t get MOCAP?
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Generative Adversarial Networks

B.Erol, S.Z. Gürbüz, M.G. Amin, “Motion 
classification using kinematically sifted 

ACGAN-synthesized radar micro-Doppler 
signatures ,” IEEE Trans. Aerospace and 

Electronic Systems, Vol. 56, Iss. 4, 
pp. 3197 - 3213, January 2020.
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Just How Inaccurate is the ACGAN?

Let’s remove outliers 
using a convex hull 
defined using PCA 

From 40k samples, 9k removed
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How Can GAN Be Prevented From 
Making Errors in Target Model?
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Physics-Aware ML Solution for 
Human Activity Recognition
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We need to integrate our knowledge of human kinematics
into the GAN so variants are generated within physical bounds

Normal Walking    Walking on Toes        Short Steps            Scissor Gait       Walking w/Cane      

The ENVELOPE of the micro-Doppler signature reflects the
 Physical bounds on maximum velocity for a given activity,
 Captures periodicities inherent to the motion



Sevgi Z. Gurbuz (szgurbuz@ua.edu)

Multi-Branch GAN with Auxilliary
Envelope
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 Generator: 
10 convolutional layers 

 Discriminator: 
 Main Branch:  8-layer CNN on mD
 Auxiliary Branch:  3 1-D convolutional 
layers taking mD envelope as input.

Conventional Loss Function: 
 Earth-movers distance of Wasserstein 

GAN (WGAN)

B. Erol, S. Z. Gurbuz, and M. G. Amin, “Synthesis of 
micro-doppler signatures for abnormal gait using multi-
branch discriminator with embedded kinematics,” 
in IEEE Int. Radar Conf., 2020, pp. 175–179.
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Effect of Adding Auxiliary Branch
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How Can We Improve Further?

22

• Let’s Quantify Kinematic Fidelity…
 Curve Matching as similarity metrics

– Dynamic Time Wrapping (DTW) 
– Discrete Fréchet Distance (DFD)

 Pearson Correlation: Measure the linear correlation between 
two random variables by computing the covariance of the two 
variables divided by the product of their standard deviations. 

 It has a value between +1 and -1. A value of +1 is total positive linear 
correlation, 0 is no linear correlation, and -1 is total negative 
linear correlation. 
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Add Kinematic Metric to Loss Function:
Loss-Regularized (LR) MBGAN
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𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 𝛾𝛾 ∇ �𝑥𝑥𝐷𝐷( �𝑥𝑥) 2 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶𝑃𝑃

𝐷𝐷 𝑥𝑥 − 𝐷𝐷(𝐺𝐺(𝑧𝑧))

 x:  Real data instance
 z:  Noise
 D(x):  Discriminator’s estimate of the 

probability that the real data instance x is real  
 D(G(z)) :  Discriminator’s estimate of the 

probability that a fake instance is real

Gradient Penalty

New term based on 
sensor physics, 
kinematics, etc.
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Results of Adding Kinematic Loss
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M. Rahman, S. Z. Gurbuz and M. G. Amin, “Physics-aware design of multi-branch 
GAN for human RF micro-Doppler signature synthesis ,“ in 2021 IEEE International 
Radar Conference (RADAR), Atlanta, GA.
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Classification Accuracy
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• Real samples: 60 samples per class 
(5 classes)

• Synthetic samples: 500 samples/class for each GAN
• Convolutional Autoencoder (CAE)

– Three blocks; each block has 2 convolutional layers  
+ concatenation + max pooling

Synthesized Data Sourceer Classifier Accuracy

WGAN CAE 86.64%
MBGAN CAE 88.13%

LR-MBGAN CAE 89.83%
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How Can We Exploit 
“Datasets of Opportunity” ?

• Different sources of real RF data:
– In an RF sensor network:

• Different frequency
• Different angle
• But observing the same participant

– Similar experiments conducted elsewhere
• Same/different frequency/angle
• Different participants

– RF datasets of motion classes, frequency, angle, 
and participants

26
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Cross-Frequency Training of RF Data
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Three RF Sensors:
• 77 GHz TI IWR 1443
• 24 GHz Ancortek SDR-KIT
• <10 GHz XeThru X4M03
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Cross-Frequency Classificiation with 
Transfer Learning from VGGnet
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❑ VGG16 net with top layer modification
- Global average pooling followed by 2 fully connected layers
- Drop out: 0.5
- 77 GHz: batch size 8,Learning rate 2e-4, two Dense layers of size 256, Decay 1e-6, Adam Optimizer
- 24 GHz: batch size 32,Learning rate 1e-4, two Dense layers of size 256, Decay 1e-6, Adam Optimizer
- 10 GHz: batch size 8,Learning rate 2e-4, two Dense layers of size 128, Decay 1e-6, Adam Optimizer

Performance degrades 
while training and 

testing with different 
frequency data
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Cross-Frequency Classification with 
Convolutional Auto-Encoder (CAE)
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❑ 11 different classes:
- 60 samples per class for 77 & 10 GHz
- 150 samples per class for 24 GHz

❑ CAE:  Total of 5 layers
- When decoder removed, 2 dense layers 
followed by a soft-max layer added
- Number of filters in each layer: 64
- Filter Size: 3x3 & 9x9 filters are 

concatenated
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Cross-Frequency Pre-Training on GAN-
Synthesized Signatures
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❑ CAE trained on synthetic data, and fine tuned on real data
▪ 100 vs 20 epochs
▪ Trained on 77 GHz synthetic data and fine tuned on each sensor 

individually
▪ Testing done on data from all 3 frequencies

❏ GANs-based model performs slightly worse 
❏ Presence of kinematically inaccurate data 
❏ PCA sifting algorithm not selective enough (remove outliers)
❏ Similarity among classes like picking up an object, bending causes 

GAN to learn biased distribution
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AI/ML Challenge Dataset Resources

• Publications and Multi-Media videos of 
conference presentations related to this 
dataset accessible via

Computational Intelligence for Radar Lab
http://ci4r.ua.edu

31

http://ci4r.ua.edu/
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Thank You!
Sevgi Zubeyde Gurbuz 

Assistant Professor
Computationally Intelligence 

for Radar (CI4R) Lab
Dept. of Electrical and 
Computer Engineering

University of Alabama –
Tuscaloosa

szgurbuz@ua.edu

Visit us at: http://ci4r.ua.edu
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