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AI: Today vs Tomorrow
 Artificial intelligence is enabled by machine learning 

which enables “machines” to use data and connectivity for 
intelligent and autonomous decision making

AI as fiction:
Talos – the “bronze” 
man of Greek myths

AI to compute:
Computers – can do 
arithmetic, math, etc

AI as a brain:
Intelligence – can 

mimic human brain



 AI systems will rely on wireless systems in two ways
 Learning (at the edge) to communicate?
 Communication for learning (joint design)?

AI: Today vs. Tomorrow
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Today’s AI Tomorrow’s AI
• Mostly centralized, single 

agent at a controller
• Distributed, multi-agent 

systems at the edge
• Relies on big data • Learns with small data
• Model-based or model-free • Explainable
• Training-dependent • Nearly training-free
• Learns specific “tasks”, 

unreliable
• Reliable, learns “skills” 

and generalizes to unseen 
tasks and environments



5

New Concept: Experienced Deep 
Reinforcement Learning for Reliable 

Communications

A. T. Kasgari, W. Saad, M. Mozaffari, and H. V. Poor, "Experienced Deep 
Reinforcement Learning with Generative Adversarial Networks (GANs) for 

Model-Free Ultra Reliable Low Latency Communications", IEEE Transactions 
on Communications, vol. 69, no. 2, pp. 884 - 899, February 2021.
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Reliable AI for Reliable Communications

 Ultra-reliable low latency communications (URLLC) will be a 
staple of 6G, and will have to go “extreme”

 URLLC has been around for a while but prior art…
 Focused on IoT sensors (uplink) – autonomous vehicles/drones 

are different (downlink? large packets?)!
 Assumes known models for traffic (M/M/1 etc.)– latency has many 

components, hard to model!
 Considers slow deep reinforcement learning (DRL) – learning in 

URLLC must handle extreme, rare conditions!

 Fundamental question: Can we design reliable AI that can 
work well under extreme conditions to achieve URLLC 
or, more broadly, reliable links?
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System Model

 Consider the downlink of a single-cell wireless network 
whose base station is sending latency-sensitive control 
message to autonomous vehicles

 We consider a downlink OFDMA system with resource 
blocks that must be allocated

 The downlink rate from the BS to a user i will be

RB allocation
indicator

Channel
gain

Power allocated
over RB jBandwidth
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Problem Formulation

 Reliability is defined as the probability of end-to-end 
packet delay exceeding a threshold

 We can map this to the following constraint:

 We do not make any assumptions for a delay model
 Delay is intrinsically hard to model, most models are often 

unrealistic and have some hidden drawbacks
 Delay has many components, hard to model their 

combination precisely

Unknown
relationship

Packet
size

Arrival
rate



 Our goal is to solve the following problem

 Explicit rate guarantees imposed
 Challenging to solve because of our model-free assumption

Problem Formulation
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Reliability
constraint

Feasibility
constraints

Rate
constraint
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Handling Model-Free
 In reality, a wireless network can empirically measure the 

delay

 Network can “learn” the delay once it connects with a user
 How to learn? Reinforcement learning is natural but…

 ….classical solutions cannot handle the large state space
 Solution: Deep reinforcement learning

 Deep RL used because it is appropriate to handle our large 
state space not because it is “fashionable”

Ratio of number of packets with delay excess
and total number of packets
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Deep-RL for Model-Free URLLC

 State space: number of packets transmitted, packet size, and 
channel gains

 PPO: Proximal policy optimization determines target rates
 Action space reducer: Deep-RL made tractable
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Deep-RL for Model-Free URLLC
 The reward function used by deep-RL:

 Theorem 1: By maximizing this reward, after convergence of 
the deep-RL algorithm, the reliability of each user is 
guaranteed, such that:

 Implicitly ensures rate requirements as well

Time-varying weight that control
the reliability
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Action Space Reduction
 The action space for the deep-RL is too large

 Non-wireless prior work: Small action space (e.g. Atari)
 Wireless prior work on deep-RL does not handle the large 

action space, but maintains complexity
 Two-step solution

 Use the PPO  algorithm optimize rate, rather than RB/power
 Map PPO outcomes to original actions (action space reducer)
 Action space reducer: a re-formulated optimization problem

 But, is deep-RL reliable and suitable for URLLC?
 No! Can be slow to converge and unreliable extreme cases
 Solution? Use generative adversarial networks (GANs)!
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What is GAN?
 A generative model seeks to create data that is not seen 

before, but fits some input data distribution

 Generator: Tries to generate fake data
 Discriminator: Figure out whether data is fake or real

 Adversarial interactions between the two (game theory)

Figure source: http://hunterheidenreich.com/blog/what-is-a-gan/
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Experienced Deep RL
 Use GAN to create a “virtual environment” for training

 Virtual environment is created by GAN using a mix of 
(limited) real data and synthetic (simulated) data 
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Experienced Deep RL
 GAN-based refiner 

 Proposed by Apple for 
computer vision

 Inputs
 Unlabeled real data
 Synthetic model data

 Output
 Refined (and larger) dataset 

that includes new network 
conditions (extreme events) 
that can train your deep RL
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Experienced Deep RL
 We train our deep RL using the GAN-refined data

 We now have an experienced agent that has been exposed to 
extreme (rare) network conditions/events

 The experienced agent will be able to better cope with extreme 
events as well as to converge faster in a URLLC system by 
eliminating transient period

 The refiner (which is a neural network) is trained as 
follows:

Refined, real-like
data

Discriminator 
weights

Refiner 
weights

Control
Real vs. synthetic
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Experienced Deep RL
 Theorem 2: The refiner cannot be trained (i.e., problem is 

infeasible) if: 

 Threshold is function of the expected values of synthetic data 
and refiner output

 We can control how our data is being generated
 There is also an upper bound but hard to characterize 

mathematically
 Using our GAN and these results, we can create a training 

environment for ANY deep RL agent
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Simulation Results
 We use a real dataset with specific packet sizes and inter-

arrival times (with some modification)
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Simulation Results

 Experience allows a very smooth handling of extreme 
events compared to vanilla deep-RL 
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Simulation Results

 Rate-reliability-latency tradeoff
 99% reliability, 4.2 ms latency, but rate of 1 Mbps
 To gain 1% reliability, 47% lower delay but 7-times lower rate 
 Higher rate, higher power needed to have higher rates 



Open Questions
 Explore disentangled representations (e.g., identify “pieces” 

of the data that can potentially be synthesized)
 Extensions to multi-agent scenario is a very interesting 

aspect (how to look at scale in that case)
 Can we have a multi-agent GAN? (Discussed next)
 Can we have a multi-agent, generalizable RL? (discussed next)
 Can we work with “distributions” not averages? (see Q. Zhang, W. 

Saad, et al.)

 We used a deep Q network
 Can we design new deep RL architectures with a more 

interesting backbone ANN? (see M. Chen, W. Saad, et al.) 22
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Distributed, Brainstorming Generative 
Adversarial Networks (BGANs): 

Framework and Applications 

A. Ferdowsi and W. Saad, "Brainstorming Generative Adversarial Networks 
(BGANs): Towards Multi-Agent Generative Models with Distributed Private 

Datasets", arXiv:2002.00306.

Q. Zhang, A. Ferdowsi, W. Saad, and M. Bennis, "Distributed Conditional 
Generative Adversarial Networks (GANs) for Data-Driven Millimeter Wave 

Communications in UAV Networks", IEEE Transactions on Wireless 
Communications, to appear, 2022.
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Distributed GANs?

 Existing GAN models (including variants such as 
InfoGAN, conditional GAN, etc.) are centralized

 What if the data of interest is:
 Distributed among multiple agents
 Scarce (each agent has partial data)
 Private (agents do not want to share their data)

 Can we learn the distribution of the total data 
without sharing the raw data between the agents 
and without relying on a central server? 
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Existing Distributed GAN Solutions

Federated learning 
(FLGAN)

- Not fully distributed

Multi-discriminator 
(MDGAN)

Forgiver-First Update 
(F2UGAN)
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Drawbacks of the state-of-the art
 Not fully distributed (need a central controller)
 Expensive communication requirements 

particularly for MDGAN and  F2UGAN
 Agents cannot have different neural network 

architectures and, thus, they must be homogeneous
 Agents do not own their generators
 Can we create a fully-distributed solution with 

multiple, heterogeneous agents?
 A. Ferdowsi and W. Saad, "Brainstorming Generative Adversarial Networks (BGANs): 

Towards Multi-Agent Generative Models with Distributed Private Datasets", 
arXiv:2002.00306.
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Brainstorming GANs

 Architecture allows 
each agent to have 
their own generator 
and discriminator

 Brainstorming: Share 
the generated data 
points (ideas) with 
other agents at every 
training epoch
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Benefits of BGANs

 Fully distributed, we do not require a central controller or 
aggregator

 Agents can have different neural network architectures
 Capabilities-tailored neural networks

 Less communication overhead than most baselines  
(depends on the dimensions of the data points rather than 
the neural network parameters)
 Will be shown to be more efficient in practical cases

 We theoretically show that this GAN architecture admits 
an equilibrium and is effective
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Simulation Results
 If the agents own partial, non-overlapping data, can they 

figure out the entire distribution?

 Each agent owns part of the circle  Each agent owns a single digit
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Simulation Results
 If the agents own partial, non-overlapping data, can they 

figure out the entire distribution?

 CIFAR-10
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Simulation Results

JSD comparison between BGAN, FLGAN, 
MDGAN and F2U on ring dataset

JSD comparison between BGAN, FLGAN, 
MDGAN, and F2U on the MNIST dataset

Number of agents
Batch size
Data size

Neural network size



Summary
 We showed that distributed GAN models with partial

datasets that are  distributed across devices can be 
devised with no centralized control

 What can we do with this next?
 Enhance security/privacy
 Distributed BGAN discriminator for inference
 More sophisticated network connectivity and graphs
 Applications to security (intrusion detection, GC’19)
 Applications of BGAN to wireless networks (from channel modeling to 

resource allocation and vehicular networking)

 Let’s see an example application 32
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BGAN-based UAV Channel Modeling
 Can we create a spatio-temporal 

map through UAV collaboration?
 Assume stable air-to-air links

 Each UAV has its local dataset, a 
generator, and a discriminator

 Each UAV shares its generated channel 
samples with other UAVs, by forming a 
distributed learning network

 All generators collaboratively generate 
channel samples to fool all of the 
discriminators

 Reformulated with BGAN
 We then find the optimal architecture 

that enables a fast convergence time 
while heeding network resources



 Learning rate improves with more communication resources B for 
A2A transmissions, and decreases for larger networks (larger I).

 Q. Zhang, A. Ferdowsi, W. Saad, and M. Bennis, “Distributed Conditional 
Generative Adversarial Networks (GANs) for Data-Driven Millimeter Wave 
Communications in UAV Networks”, arXiv:2102.0175. 34

Simulation Results



35

Generalizable Multi-Agent 
Reinforcement Learning with Meta-

Learning 

Y. Hu, M. Chen, W. Saad, H. V. Poor, and S. Cui, "Distributed Multi-agent 
Meta Learning for Trajectory Design in Wireless Drone Networks", IEEE 

Journal on Selected Areas in Communications (JSAC), Special Issue on UAV 
Communications in 5G and Beyond Networks, vol. 39, no. 10, pp. 3177 - 3192, 

Oct. 2021.



Towards Generalizable Multi-
Agent RL

 Use case for wireless-aware drone trajectory planning

Drone trajectory

Active user

Drone base station

Service area

Inactive user

dr

Cluster 

 

Cluster

 Key Goal: Fly drone base stations 
in a way to maximize coverage 
(reliability) for the maximum 
number of users

 Problem can be formulated as a 
non-convex coverage optimization 
problem

 RL can be a solution but existing 
multi-agent RL have several 
drawbacks
 Large overhead for 

coordination
 Difficulty to generalize to 

unseen tasks/environments
 High variance



Towards Generalizable Multi-
Agent RL

 Value decomposition => reduce overhead, use local observations
 Policy gradient to enhance variance
 Meta-learning to enable each agent to learn a “skill” and generalize, 

i.e., learn a group/distribution of tasks

Interact UpdateInitial
policy 

and 
value

Value
Decompos

e

Record actions, state, and reward 

Select actions based on current policy

Update
initial
policy 

and 
value

New task

𝐿෨, 𝑉෨𝜽,,ೕᇲ , 𝑧 𝐿෨, 𝜋𝜽ೌ,,ೕᇲ , 𝑧



Towards Generalizable Multi-
Agent RL

 Meta-RL approach is better in terms of both network performance, 
and convergence time

 Gap is significant  compared to classical independent actor critic 
algorithm (IAC)
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What’s next in AI?
 Issues of reliability/generalization (particularly at high 

frequencies): Experienced/meta RL 
 Beyond standard learning:

 Learning is mostly training-based, can we get rid of training?
 We are pursuing several ideas in this context: 

 Continual learning that can retain lifelong features
 Generalize from small data (reasoning over data) through causal 

learning and/or other related concepts

 Theoretical foundations for RL/explainable AI

 Rich field of application in 6G with specific needs
 If we want AI-native networks, we must go towards 

generalizable learning frameworks
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Joint Learning and Communications:
Edge AI as a Wireless Use Case

M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, "A Joint Learning 
and Communications Framework for Federated Learning over Wireless 

Networks", IEEE Transactions on Wireless Communications, vol. 20, no. 1, pp. 
269 - 283, January 2021.



FL as a Wireless Use Case
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Without data
transmission

 Centralized training

 Distributed training



Joint FL-Wireless Design
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 Since the global and local FL model parameters
need wireless link exchanges, then wireless
transmission errors will impact FL
performance

 The base station (BS) must update the global FL
model as it receives all of the local FL model
transmitted from the users. Hence,
transmission delay and energy consumption
must be considered.

 Communication to support FL!
 M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A

Joint Learning and Communications Framework for Federated
Learning over Wireless Networks”, IEEE Transactions on

Wireless Communications, 2021.

 FL training process in a wireless network



 Theorem 1: An upper bound on the convergence point
of FL over wireless networks can now be found:

 This is a key characterization of FL performance over a
wireless network
 Convergence affected by PER and user association: wireless

network must be reliable enough to support effective FL
 We used full gradient descent but results extendable

Global FL Model Analysis
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Total samples
Global 
model at

convergence

Number of samples 
of user i



Simulation Results

Identification 
accuracy 

as the number 
of users 
varies.



Energy vs. Precision vs. Accuracy

 Fundamental tradeoff: energy, precision, accuracy
 Federated quantized neural networks

 M. Kim, W. Saad, M. Mozaffari, and M. Debbah, "On the Tradeoff between Energy, Precision, and 
Accuracy in Federated Quantized Neural Networks", in Proc. of the IEEE International Conference on 
Communications (ICC), Green Communication Systems and Networks Symposium, Seoul, South Korea, 
May 2022. 45
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More on FL and Communications?

 Convergence time analysis (with M. Chen, IEEE TWC 2021, 
IEEE ICC 2020 – best paper award)

 Energy efficiency challenges (with Z. Yang, IEEE TWC 2021)
 Fully distributed FL with no central controller (with M. Chen, 

IEEE Communications Magazine, to appear 2021)
 Incentives for FL (with L. U. Khan, IEEE Communications 

Magazine, 2020)
 FL for vehicular networks (with S. Samarakoon, IEEE TCOM 

2020)
 FL for virtual reality optimization (with M. Chen, IEEE TWC 

2020)
 FL with drones and vehicles (with T. Zeng, IEEE ICC 2020, IEEE 

TWC submitted)



Other research areas
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 Reliable, generalizable, distributed learning
 Reliable machine learning 
 Meta-learning and training-free learning
 Distributed and multi-agent learning
 Continual learning

 Connected drones and 
autonomous vehicles
 Distributed learning and 

control
 Wireless connectivity
 Sensing and comm.

 AI-native semantic
communications
 Semantic information
 Generalizable AI 
 End-to-end analysis

 5G/6G/IoT systems
 Reliable, low latency 

comm. with ML/GAN
 Terahertz/RIS
 AI-enabled XR/Twins



Other research areas
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 Game theory
 Foundations
 Applications to

CPS, security, policy, wireless

 Smart cities 
 Big data for smart 

city optimization
 Air pollution 
 Security

 Quantum networks
 Communications with qubits
 Quantum algorithms
 Physics-informed networking

 CPS security
 Blockchains
 Capsules

 Age of information
 Performance analysis of 

Internet of Things systems 
with age of information 
considerations

 Information management



Conclusions
 Distributed learning is an exciting area, 

particularly when merged with wireless
 Distributed learning is not just federated learning

 Distributed RL, multi-agent systems, GANs
 Generalizable machine learning is the way forward in 

wireless
 Using a mixture of augmentation, multi-task, continual, and 

explainable AI

 BGAN is the first fully distributed GAN
 Abundant field of applications

 From wireless design to semantic communications 49



Finally….
Thank You,
Questions?


