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AI: Today vs Tomorrow
 Artificial intelligence is enabled by machine learning 

which enables “machines” to use data and connectivity for 
intelligent and autonomous decision making

AI as fiction:
Talos – the “bronze” 
man of Greek myths

AI to compute:
Computers – can do 
arithmetic, math, etc

AI as a brain:
Intelligence – can 

mimic human brain



 AI systems will rely on wireless systems in two ways
 Learning (at the edge) to communicate?
 Communication for learning (joint design)?

AI: Today vs. Tomorrow
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Today’s AI Tomorrow’s AI
• Mostly centralized, single 

agent at a controller
• Distributed, multi-agent 

systems at the edge
• Relies on big data • Learns with small data
• Model-based or model-free • Explainable
• Training-dependent • Nearly training-free
• Learns specific “tasks”, 

unreliable
• Reliable, learns “skills” 

and generalizes to unseen 
tasks and environments
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New Concept: Experienced Deep 
Reinforcement Learning for Reliable 

Communications

A. T. Kasgari, W. Saad, M. Mozaffari, and H. V. Poor, "Experienced Deep 
Reinforcement Learning with Generative Adversarial Networks (GANs) for 

Model-Free Ultra Reliable Low Latency Communications", IEEE Transactions 
on Communications, vol. 69, no. 2, pp. 884 - 899, February 2021.
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Reliable AI for Reliable Communications

 Ultra-reliable low latency communications (URLLC) will be a 
staple of 6G, and will have to go “extreme”

 URLLC has been around for a while but prior art…
 Focused on IoT sensors (uplink) – autonomous vehicles/drones 

are different (downlink? large packets?)!
 Assumes known models for traffic (M/M/1 etc.)– latency has many 

components, hard to model!
 Considers slow deep reinforcement learning (DRL) – learning in 

URLLC must handle extreme, rare conditions!

 Fundamental question: Can we design reliable AI that can 
work well under extreme conditions to achieve URLLC 
or, more broadly, reliable links?
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System Model

 Consider the downlink of a single-cell wireless network 
whose base station is sending latency-sensitive control 
message to autonomous vehicles

 We consider a downlink OFDMA system with resource 
blocks that must be allocated

 The downlink rate from the BS to a user i will be

RB allocation
indicator

Channel
gain

Power allocated
over RB jBandwidth
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Problem Formulation

 Reliability is defined as the probability of end-to-end 
packet delay exceeding a threshold

 We can map this to the following constraint:

 We do not make any assumptions for a delay model
 Delay is intrinsically hard to model, most models are often 

unrealistic and have some hidden drawbacks
 Delay has many components, hard to model their 

combination precisely

Unknown
relationship

Packet
size

Arrival
rate



 Our goal is to solve the following problem

 Explicit rate guarantees imposed
 Challenging to solve because of our model-free assumption

Problem Formulation
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Reliability
constraint

Feasibility
constraints

Rate
constraint
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Handling Model-Free
 In reality, a wireless network can empirically measure the 

delay

 Network can “learn” the delay once it connects with a user
 How to learn? Reinforcement learning is natural but…

 ….classical solutions cannot handle the large state space
 Solution: Deep reinforcement learning

 Deep RL used because it is appropriate to handle our large 
state space not because it is “fashionable”

Ratio of number of packets with delay excess
and total number of packets
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Deep-RL for Model-Free URLLC

 State space: number of packets transmitted, packet size, and 
channel gains

 PPO: Proximal policy optimization determines target rates
 Action space reducer: Deep-RL made tractable
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Deep-RL for Model-Free URLLC
 The reward function used by deep-RL:

 Theorem 1: By maximizing this reward, after convergence of 
the deep-RL algorithm, the reliability of each user is 
guaranteed, such that:

 Implicitly ensures rate requirements as well

Time-varying weight that control
the reliability
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Action Space Reduction
 The action space for the deep-RL is too large

 Non-wireless prior work: Small action space (e.g. Atari)
 Wireless prior work on deep-RL does not handle the large 

action space, but maintains complexity
 Two-step solution

 Use the PPO  algorithm optimize rate, rather than RB/power
 Map PPO outcomes to original actions (action space reducer)
 Action space reducer: a re-formulated optimization problem

 But, is deep-RL reliable and suitable for URLLC?
 No! Can be slow to converge and unreliable extreme cases
 Solution? Use generative adversarial networks (GANs)!
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What is GAN?
 A generative model seeks to create data that is not seen 

before, but fits some input data distribution

 Generator: Tries to generate fake data
 Discriminator: Figure out whether data is fake or real

 Adversarial interactions between the two (game theory)

Figure source: http://hunterheidenreich.com/blog/what-is-a-gan/
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Experienced Deep RL
 Use GAN to create a “virtual environment” for training

 Virtual environment is created by GAN using a mix of 
(limited) real data and synthetic (simulated) data 
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Experienced Deep RL
 GAN-based refiner 

 Proposed by Apple for 
computer vision

 Inputs
 Unlabeled real data
 Synthetic model data

 Output
 Refined (and larger) dataset 

that includes new network 
conditions (extreme events) 
that can train your deep RL
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Experienced Deep RL
 We train our deep RL using the GAN-refined data

 We now have an experienced agent that has been exposed to 
extreme (rare) network conditions/events

 The experienced agent will be able to better cope with extreme 
events as well as to converge faster in a URLLC system by 
eliminating transient period

 The refiner (which is a neural network) is trained as 
follows:

Refined, real-like
data

Discriminator 
weights

Refiner 
weights

Control
Real vs. synthetic
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Experienced Deep RL
 Theorem 2: The refiner cannot be trained (i.e., problem is 

infeasible) if: 

 Threshold is function of the expected values of synthetic data 
and refiner output

 We can control how our data is being generated
 There is also an upper bound but hard to characterize 

mathematically
 Using our GAN and these results, we can create a training 

environment for ANY deep RL agent
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Simulation Results
 We use a real dataset with specific packet sizes and inter-

arrival times (with some modification)
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Simulation Results

 Experience allows a very smooth handling of extreme 
events compared to vanilla deep-RL 
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Simulation Results

 Rate-reliability-latency tradeoff
 99% reliability, 4.2 ms latency, but rate of 1 Mbps
 To gain 1% reliability, 47% lower delay but 7-times lower rate 
 Higher rate, higher power needed to have higher rates 



Open Questions
 Explore disentangled representations (e.g., identify “pieces” 

of the data that can potentially be synthesized)
 Extensions to multi-agent scenario is a very interesting 

aspect (how to look at scale in that case)
 Can we have a multi-agent GAN? (Discussed next)
 Can we have a multi-agent, generalizable RL? (discussed next)
 Can we work with “distributions” not averages? (see Q. Zhang, W. 

Saad, et al.)

 We used a deep Q network
 Can we design new deep RL architectures with a more 

interesting backbone ANN? (see M. Chen, W. Saad, et al.) 22
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Distributed, Brainstorming Generative 
Adversarial Networks (BGANs): 

Framework and Applications 

A. Ferdowsi and W. Saad, "Brainstorming Generative Adversarial Networks 
(BGANs): Towards Multi-Agent Generative Models with Distributed Private 

Datasets", arXiv:2002.00306.

Q. Zhang, A. Ferdowsi, W. Saad, and M. Bennis, "Distributed Conditional 
Generative Adversarial Networks (GANs) for Data-Driven Millimeter Wave 

Communications in UAV Networks", IEEE Transactions on Wireless 
Communications, to appear, 2022.
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Distributed GANs?

 Existing GAN models (including variants such as 
InfoGAN, conditional GAN, etc.) are centralized

 What if the data of interest is:
 Distributed among multiple agents
 Scarce (each agent has partial data)
 Private (agents do not want to share their data)

 Can we learn the distribution of the total data 
without sharing the raw data between the agents 
and without relying on a central server? 
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Existing Distributed GAN Solutions

Federated learning 
(FLGAN)

- Not fully distributed

Multi-discriminator 
(MDGAN)

Forgiver-First Update 
(F2UGAN)
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Drawbacks of the state-of-the art
 Not fully distributed (need a central controller)
 Expensive communication requirements 

particularly for MDGAN and  F2UGAN
 Agents cannot have different neural network 

architectures and, thus, they must be homogeneous
 Agents do not own their generators
 Can we create a fully-distributed solution with 

multiple, heterogeneous agents?
 A. Ferdowsi and W. Saad, "Brainstorming Generative Adversarial Networks (BGANs): 

Towards Multi-Agent Generative Models with Distributed Private Datasets", 
arXiv:2002.00306.
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Brainstorming GANs

 Architecture allows 
each agent to have 
their own generator 
and discriminator

 Brainstorming: Share 
the generated data 
points (ideas) with 
other agents at every 
training epoch
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Benefits of BGANs

 Fully distributed, we do not require a central controller or 
aggregator

 Agents can have different neural network architectures
 Capabilities-tailored neural networks

 Less communication overhead than most baselines  
(depends on the dimensions of the data points rather than 
the neural network parameters)
 Will be shown to be more efficient in practical cases

 We theoretically show that this GAN architecture admits 
an equilibrium and is effective
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Simulation Results
 If the agents own partial, non-overlapping data, can they 

figure out the entire distribution?

 Each agent owns part of the circle  Each agent owns a single digit
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Simulation Results
 If the agents own partial, non-overlapping data, can they 

figure out the entire distribution?

 CIFAR-10
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Simulation Results

JSD comparison between BGAN, FLGAN, 
MDGAN and F2U on ring dataset

JSD comparison between BGAN, FLGAN, 
MDGAN, and F2U on the MNIST dataset

Number of agents
Batch size
Data size

Neural network size



Summary
 We showed that distributed GAN models with partial

datasets that are  distributed across devices can be 
devised with no centralized control

 What can we do with this next?
 Enhance security/privacy
 Distributed BGAN discriminator for inference
 More sophisticated network connectivity and graphs
 Applications to security (intrusion detection, GC’19)
 Applications of BGAN to wireless networks (from channel modeling to 

resource allocation and vehicular networking)

 Let’s see an example application 32
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BGAN-based UAV Channel Modeling
 Can we create a spatio-temporal 

map through UAV collaboration?
 Assume stable air-to-air links

 Each UAV has its local dataset, a 
generator, and a discriminator

 Each UAV shares its generated channel 
samples with other UAVs, by forming a 
distributed learning network

 All generators collaboratively generate 
channel samples to fool all of the 
discriminators

 Reformulated with BGAN
 We then find the optimal architecture 

that enables a fast convergence time 
while heeding network resources



 Learning rate improves with more communication resources B for 
A2A transmissions, and decreases for larger networks (larger I).

 Q. Zhang, A. Ferdowsi, W. Saad, and M. Bennis, “Distributed Conditional 
Generative Adversarial Networks (GANs) for Data-Driven Millimeter Wave 
Communications in UAV Networks”, arXiv:2102.0175. 34

Simulation Results
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Generalizable Multi-Agent 
Reinforcement Learning with Meta-

Learning 

Y. Hu, M. Chen, W. Saad, H. V. Poor, and S. Cui, "Distributed Multi-agent 
Meta Learning for Trajectory Design in Wireless Drone Networks", IEEE 

Journal on Selected Areas in Communications (JSAC), Special Issue on UAV 
Communications in 5G and Beyond Networks, vol. 39, no. 10, pp. 3177 - 3192, 

Oct. 2021.



Towards Generalizable Multi-
Agent RL

 Use case for wireless-aware drone trajectory planning

Drone trajectory

Active user

Drone base station

Service area

Inactive user

dr

Cluster 

 

Cluster

 Key Goal: Fly drone base stations 
in a way to maximize coverage 
(reliability) for the maximum 
number of users

 Problem can be formulated as a 
non-convex coverage optimization 
problem

 RL can be a solution but existing 
multi-agent RL have several 
drawbacks
 Large overhead for 

coordination
 Difficulty to generalize to 

unseen tasks/environments
 High variance



Towards Generalizable Multi-
Agent RL

 Value decomposition => reduce overhead, use local observations
 Policy gradient to enhance variance
 Meta-learning to enable each agent to learn a “skill” and generalize, 

i.e., learn a group/distribution of tasks

Interact UpdateInitial
policy 

and 
value

Value
Decompos

e

Record actions, state, and reward 

Select actions based on current policy

Update
initial
policy 

and 
value

New task

𝐿෨௖,௡ 𝑉෨𝜽೎,೙,ೕᇲ , 𝑧௝ 𝐿෨௔,௡ 𝜋𝜽ೌ,೙,ೕᇲ , 𝑧௝



Towards Generalizable Multi-
Agent RL

 Meta-RL approach is better in terms of both network performance, 
and convergence time

 Gap is significant  compared to classical independent actor critic 
algorithm (IAC)
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What’s next in AI?
 Issues of reliability/generalization (particularly at high 

frequencies): Experienced/meta RL 
 Beyond standard learning:

 Learning is mostly training-based, can we get rid of training?
 We are pursuing several ideas in this context: 

 Continual learning that can retain lifelong features
 Generalize from small data (reasoning over data) through causal 

learning and/or other related concepts

 Theoretical foundations for RL/explainable AI

 Rich field of application in 6G with specific needs
 If we want AI-native networks, we must go towards 

generalizable learning frameworks
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Joint Learning and Communications:
Edge AI as a Wireless Use Case

M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, "A Joint Learning 
and Communications Framework for Federated Learning over Wireless 

Networks", IEEE Transactions on Wireless Communications, vol. 20, no. 1, pp. 
269 - 283, January 2021.



FL as a Wireless Use Case
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Without data
transmission

 Centralized training

 Distributed training



Joint FL-Wireless Design
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 Since the global and local FL model parameters
need wireless link exchanges, then wireless
transmission errors will impact FL
performance

 The base station (BS) must update the global FL
model as it receives all of the local FL model
transmitted from the users. Hence,
transmission delay and energy consumption
must be considered.

 Communication to support FL!
 M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A

Joint Learning and Communications Framework for Federated
Learning over Wireless Networks”, IEEE Transactions on

Wireless Communications, 2021.

 FL training process in a wireless network



 Theorem 1: An upper bound on the convergence point
of FL over wireless networks can now be found:

 This is a key characterization of FL performance over a
wireless network
 Convergence affected by PER and user association: wireless

network must be reliable enough to support effective FL
 We used full gradient descent but results extendable

Global FL Model Analysis

43

Total samples
Global 
model at

convergence

Number of samples 
of user i



Simulation Results

Identification 
accuracy 

as the number 
of users 
varies.



Energy vs. Precision vs. Accuracy

 Fundamental tradeoff: energy, precision, accuracy
 Federated quantized neural networks

 M. Kim, W. Saad, M. Mozaffari, and M. Debbah, "On the Tradeoff between Energy, Precision, and 
Accuracy in Federated Quantized Neural Networks", in Proc. of the IEEE International Conference on 
Communications (ICC), Green Communication Systems and Networks Symposium, Seoul, South Korea, 
May 2022. 45
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More on FL and Communications?

 Convergence time analysis (with M. Chen, IEEE TWC 2021, 
IEEE ICC 2020 – best paper award)

 Energy efficiency challenges (with Z. Yang, IEEE TWC 2021)
 Fully distributed FL with no central controller (with M. Chen, 

IEEE Communications Magazine, to appear 2021)
 Incentives for FL (with L. U. Khan, IEEE Communications 

Magazine, 2020)
 FL for vehicular networks (with S. Samarakoon, IEEE TCOM 

2020)
 FL for virtual reality optimization (with M. Chen, IEEE TWC 

2020)
 FL with drones and vehicles (with T. Zeng, IEEE ICC 2020, IEEE 

TWC submitted)



Other research areas

47

 Reliable, generalizable, distributed learning
 Reliable machine learning 
 Meta-learning and training-free learning
 Distributed and multi-agent learning
 Continual learning

 Connected drones and 
autonomous vehicles
 Distributed learning and 

control
 Wireless connectivity
 Sensing and comm.

 AI-native semantic
communications
 Semantic information
 Generalizable AI 
 End-to-end analysis

 5G/6G/IoT systems
 Reliable, low latency 

comm. with ML/GAN
 Terahertz/RIS
 AI-enabled XR/Twins



Other research areas
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 Game theory
 Foundations
 Applications to

CPS, security, policy, wireless

 Smart cities 
 Big data for smart 

city optimization
 Air pollution 
 Security

 Quantum networks
 Communications with qubits
 Quantum algorithms
 Physics-informed networking

 CPS security
 Blockchains
 Capsules

 Age of information
 Performance analysis of 

Internet of Things systems 
with age of information 
considerations

 Information management



Conclusions
 Distributed learning is an exciting area, 

particularly when merged with wireless
 Distributed learning is not just federated learning

 Distributed RL, multi-agent systems, GANs
 Generalizable machine learning is the way forward in 

wireless
 Using a mixture of augmentation, multi-task, continual, and 

explainable AI

 BGAN is the first fully distributed GAN
 Abundant field of applications

 From wireless design to semantic communications 49



Finally….
Thank You,
Questions?


