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Pure data-driven AI can answer questions about 
"What is?" 

by learning statistical associations from complex data

Reichstein et al. 2019, see AI4Good next week!
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Typical questions in Earth sciences

IPCC
P. Gentine

What causes extremes? Causal mechanism of 
aerosol-cloud interactions?

Zscheischler et al. 2018



Two Types of Causality Studies

1) Experimental Study: when interventions are possible.  

● Either in real system or in physical simulation models
● Supports necessary and sufficient conditions for causality.
● But: In climate science often infeasible or time-consuming! Nobel prize in 

physics 2021 
for Klaus 
Hasselmann 
and Syukuro 
Manabe



Two Types of Causality Studies

1) Experimental Study: when interventions are possible.  

● Either in real system or in physical simulation models
● Supports necessary and sufficient conditions for causality.
● But: In climate science often infeasible or time-consuming!

2) Observational Study: purely from observations / model output.

● Only supports necessary conditions for causality 
● Weaker statements possible, but still powerful.
● Topic of this talk.

Nobel prize in 
physics 2021 
for Klaus 
Hasselmann 
and Syukuro 
Manabe



Causal inference

Causal inference is a framework to 
answer causal questions from 

observational and/or experimental data.

Judea Pearl
Turing-Award 2011
(theoretical framework,
starting in 1980s)

Spirtes,   Glymour,   Scheines

JD Angrist and GW Imbens
Nobel prize in economics 
2021 (drawing conclusions from 
unintended/natural experiments)

Clark Glymour
(practical algorithms,

starting in 1980s)



Causal inference and causal discovery

Two types of tasks:

1. Utilize qualitative causal knowledge in form of 
directed acyclic graphs including observed and 
unobserved / latent variables

2. Learn causal graphs based on general assumptions 
(causal discovery) → start here in the following!

        
    



Next:  Very quick (and incomplete) intro to Causality 101 

● For those new to causality.

● Everyone else: please take a 5 minute nap - or answer your email.



Concept 1:  Graphs as Language for causal models

Express causal relationships as graph

● Variables are nodes of graph.
● Edges indicate causal connection between nodes.
● Arrows indicate direction: cause → effect.

In this example:
● Three variables: X,Y, Z.
● X is a cause of Y.
● Y is a cause of Z. 

You should have a question here…



Concept 1:  Graphs as Language for causal models

Express causal relationships as graph

● Variables are nodes of graph.
● Edges indicate causal connection between nodes.
● Arrows indicate direction: cause → effect.

In this example:
● Three variables: X,Y, Z.
● X is a cause of Y.
● Y is a cause of Z. 

You should have a question here…

If X causes Y and Y causes Z, 
isn’t X then also a cause of Z?

Should there be an arrow also from X → Z?



Concept 2:   Direct vs. indirect connections

Arrows indicate direct causes only.

In this plot:
● X is a direct cause of Y.
● Y is a direct cause of Z. 
● X is only an indirect cause of Z.

Goal of causal discovery:  we want to identify only direct 
connections.  Eliminate all others.

Why eliminate indirect connections?

1) Sparsity, simplicity.

2) Only then can you understand effect of interventions!



Concept 3:  Directness is relative property
One can always transform a direct connection into an 
indirect one by including an intermediate cause!  

Toy example:

Monsoon month is direct cause of 

flooding in this model.

Monsoon month is only indirect cause 

of flooding in this model.

Both models are correct!

Directness is only defined relative to variables included in model.  



Concept 4: Causality is probabilistic relationship

Example: 

This graph implies:
1) Flooding is more likely in monsoon months, but not certain.
2) Flooding can also happen outside of monsoon months.

→ Supplement graph with probabilities.
→ Probabilistic graphical model (Bayesian network).

When learning these models from data:  

Step 1: Identify graph structure from data – hard!
Step 2: Determine probabilities afterwards to estimate causal effects – easier!

Often:  Care only about graph structure. 



Concept 5:  Hidden common causes (latent variables) 
makes things challenging!
Ex.: Cloud cover is common cause here 
       of “low UV” and “high chance of rain”.

If we remove the common cause (Cloud cover) in model:
→ Can no longer express a correct causal model with our standard arrow notation!

Three alternatives to dealing with latent variables:
1) Ensure to include all latent variables in model (usually impossible in earth science).
2) Consider arrows only as a hypothesis while absence of arrows = absence of causality!
3) Use latent causal discovery algorithms, but they are slow and tend to be statistically fragile.



How can we remove connections based on observed data?

The following 4 questions are equivalent: 
 

1) Can we eliminate edge between X and Z?

2) Is there direct connection between X and Z?

3) “Is X conditionally independent of Z given Y?”

4) Is P( X | Y , Z ) ≈ P( X | Y ) ?

If yes for any of the above:  eliminate edge between X and Z.

→ Use conditional independence test:
     Many statistical tests available to test for conditional
     independence.



A first simple algorithm for causal discovery - PC algorithm
Now we have: 

Can use cond. independence test to detect and eliminate indirect connections (graph edges).

Basic algorithm for learning independence graph from data (PC algorithm):
1. Nodes of graph  = observed variables.
2. Start with fully connected graph = assume that every variable is connected to every other 

variable.
3. Eliminate as many edges as possible using conditional independence tests. 
4. Establish arrow directions (using constraints from independence tests or temporal constraints).

This is an elimination procedure.

Whatever edges are left at end: potential causal connections (causal hypotheses).

Why only potential? 
Because some of the connections might be due to latent variables (as discussed before) in this 
simple, but still powerful algorithm.

PC algorithm - named after Peter Spirtes and Clark Glymour who invented this algorithm.



PCMCI causal discovery framework for time series

Challenge:
● Autocorrelation, time lags
● Contemporaneous links
● Latent variables    



PCMCI, PCMCI+
(Runge et al. 2019, Runge 2020)

L(atent)PCMCI (Gerhardus and Runge 2020)

PCMCI causal discovery framework for time series

Challenge:
● Autocorrelation, time lags
● Contemporaneous links
● Latent variables    



Causal Discovery 101 - Summary

● Causal interpretation of reconstructed graphs requires caution:
○ depends on assumption that causal relations reliably leave imprint in statistical 

dependencies (Markov and Faithfulness assumption)
○ some methods assume no unobserved variables: links = potential cause-effect 

relationships



Causal Discovery 101 - Summary

● Causal interpretation of reconstructed graphs requires caution:
○ depends on assumption that causal relations reliably leave imprint in statistical 

dependencies (Makov and Faithfulness assumption)
○ some methods assume no unobserved variables: links = potential cause-effect 

relationships

● But solid tool - underutilized in the geosciences where often just correlation and 
regression are used

● Proposed Use: Generate and test causal hypotheses



Causal Inference 101: Utilizing causal graphs

Task: Given causal graph and data, compute causal effect 
of intervention in terms of observational distribution P(V)
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Task: Given causal graph and data, compute causal effect 
of intervention in terms of observational distribution P(V)

Here 

 → can be estimated with (deep) ML
    

XX

Correlation 
regression

Causal 
regression



Optimal causal effect estimators 
(Runge NeurIPS 2021)

Causal Inference 101: Utilizing causal graphs

Task: Given causal graph and data, compute causal effect 
of intervention in terms of observational distribution P(V)

Here 

 → can be estimated with (deep) ML
    



Causal inference for earth science - special challenges

Runge et al. (2019)



Causal inference for earth science - special challenges

Need for close collaboration between 
method developers and Earth scientists

Runge et al. (2019)



Application use cases

● Learning causal graphs to understand mechanisms
● Quantifying causal mechanisms: link strength and mediation analysis

● Causally robust forecasting (e.g. Kretschmer et al. 2017, DiCapua 2019)

● Detection and attribution of extreme events (e.g. Hannart et al. 2016)

● Evaluating climate models and constraining climate change projections
● Hybrid physical-ML modeling

● …



Causal inference and dimension-reduction

● Motivation: High-dimensionality and redundancy of 
spatio-temporal data

● Idea: First extract ‘modes of variability’

Runge et al. NatComm. (2015)
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Causal inference and dimension-reduction

● Motivation: High-dimensionality and redundancy of 
spatio-temporal data

● Idea: First extract ‘modes of variability’

Runge et al. NatComm. (2015)

Tibau et al. (2018)



Causal physical model evaluation

● Motivation: Simple statistics can be right for the 
wrong reasons

● Idea: Compare climate models and observations in 
terms of causal relationships

Nowack et al. NatComm. (2020)
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Causal physical model evaluation

● Motivation: Simple statistics can be right for the 
wrong reasons

● Idea: Compare climate models and observations in 
terms of causal relationships

Nowack et al. NatComm. (2020)

Baker et al. (2016), Hammerling et al. (2018): error/consistency checks



Causal ML-hybrid modeling
● Several previous AI4Good talks by Tapio Schneider, Bjorn Stevens, Chris Bretherton, 

Eyring and Gentine
● Idea: Restrict input for neural nets to causal drivers (see AI4Good by Eyring and Gentine)

Also see AI4Good talk by 
Reichstein next week!



Application: effect of arctic temp on jet stream
Science question:  What is the effect of arctic temperature on speed / latitude of jet stream, and vice versa?

● Dominant relationships: Positive for jet speed, negative for jet latitude.
● Both are thus positive (reinforcing) feedback loops.
● Get time lags from analysis, too.

Samarasinghe, McGraw, Barnes, Ebert-Uphoff, A study of links between the Arctic and the midlatitude jet stream using Granger and Pearl causality, 

Environmetrics, 2018.

Only two variables, but causal feedback loops.
→ Use time series framework discussed earlier:

add lagged variables to model and build model including those.



Application:  Spatially-distributed systems (Approach 1)

Sample input:  500 mb 
geopotential height
  
Source: 
NCEP/NCAR Reanalysis, 
1948-2011 

Results for boreal winter 
(Dec-Feb)

Runge, J., Petoukhov, V., Donges, J.F., Hlinka, J., Jajcay, N., Vejmelka, M., Hartman, D., Marwan, N., Paluš, M. and Kurths, J., 2015. Identifying causal 

gateways and mediators in complex spatio-temporal systems. Nature communications, 6(1), pp.1-10.

Approach 1: 
Start with data on grid
→ dimensionality reduction
→ smaller number of nodes
→ build causal graph in 
     reduced node space



Application:  Spatially-distributed systems (Approach 2)

Ebert-Uphoff and Deng, A New Type of Climate Network based on Probabilistic Graphical Models: Results of Boreal Winter versus Summer, 

Geophysical Research Letters, vol. 39, L19701, 2012.

Goal: track information flow in the atmosphere. 
Nodes: grid points (each with associated time series)
Input:  Atmospheric field on global grid
Output: Causal interactions between grid points

Sample input:  500 mb 
geopotential height
  
Source: 
NCEP/NCAR Reanalysis, 
1948-2011 

Results for boreal winter 
(Dec-Feb)

Algorithm: PC stable 
(variation of PC algorithm)
with lagged variables

Information flow in the atmosphere

Approach 2:  Use all nodes from original global grid
→ Challenge:  Grid spacing can create artifacts!
→ Need to map data to special grid (here: Fekete points)



Application:  Spatially-distributed systems (Approach 2)

Ebert-Uphoff and Deng. "Causal discovery from spatio-temporal data with applications to climate science." In 2014 13th International 

Conference on Machine Learning and Applications, pp. 606-613. IEEE, 2014.

Example of grid artifacts

Using Fekete grid with 800 points
→ points equally spaced
→ only small grid artifacts

Using equal area grid with 918 points
→ results distorted by uneven distance between 
neighboring points!



Application:  Spatially-distributed system (Approach 3)

Samarasinghe, Deng, Ebert-Uphoff, A Causality-Based View of the Interaction between Synoptic- and Planetary-Scale Atmospheric 

Disturbance, Journal of the Atmospheric Sciences, 77 (3): 925–941, 2020.

Causal discovery in Spectral Space
Goal: track interactions between processes occurring at different spatial scales

1) Causal discovery in grid space:

2) Causal discovery in spectral space using spherical harmonics (SH) for decomposition:

Nodes:  real and imaginary 
coefficients of SH decomposition 

Use spherical harmonics (SH) 
decomposition for functions on a sphere

Approach 3:  Start with data in global grid
→ Transform into spectral space
→ Causal discovery in spectral space





Take-home message

● Causal inference: Framework to answer causal 
questions from empirical data

● Two settings:
○ Utilize qualitative causal knowledge (graphs)
○ Learn causal graphs (then utilize them)

● Causal reasoning requires assumptions about 
underlying system and data

● Causal inference well complements AI and machine 
learning on complex datasets

● Primary goal of causal discovery is to generate 
hypotheses (for further investigation)

● LOTS of opportunity for causality in earth science! 

Software: 
● Tigramite, pcalg, TETRAD, daggity, causalfusion, 

causeme platform, ...

    





Join the causal inference group at DLR / TU Berlin

Open postdoc positions – 
www.climateinformaticslab.com



Join CIRA and AI2ES
Open position:  

Data Visualization Researcher 
(Research Associate II)

Apply by Feb 7, 2022.
See posting at

https://www.ai2es.org/opportunities/hiring/

https://www.ai2es.org/opportunities/hiring/


NSF AI Institute for Research on Trustworthy AI in 
Weather, Climate, and Coastal Oceanography (AI2ES)

https://www.ai2es.org/

Cooperative Institute for Research in the 
Atmosphere (CIRA)

https://www.cira.colostate.edu/

Use AI to detect in satellite imagery:
● Convection initiation (severe weather)
● Cloud properties, vertical profiles (aviation),
● Gravity waves (understand energy transfer),
● Rapid intensification of tropical cyclones.

Use AI (image-to-image translation) to generate:
● Synthetic radar imagery (severe weather)
● Synthetic passive microwave imagery (tropical cyclones). 

Use AI to emulate radiative transfer equations
→ speed up numerical weather prediction models.

Funded by NOAA/NASA.

Make AI trustworthy for earth science:
● Simplify AI methods to make them more robust and 

interpretable;
● Develop explainable AI (XAI) methods for 

weather/climate/coastal application;
● Work with risk communication scientists and 

forecasters to identify AI and XAI needs for 
operational weather forecasting settings.

Funded by National Science Foundation (NSF)

More examples of AI research topics for weather/climate applications - from Imme’s work

https://www.ai2es.org/
https://www.cira.colostate.edu/


Thank you! Questions?


