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Al and machine learning in Earth system sciences

Machine learning tasks Earth science tasks
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Typical questions in Earth sciences
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Typical questions in Earth sciences
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Typical questions in Earth sciences

Precipitation
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Two Types of Causality Studies

Schematic for Global
Atmospheric Model

‘ Horizontal Grid (Latitude-Longitude)

Vertical Grid (Height or Pressure)

1) Experimental Study: when interventions are possible.

Fro. 1. Ocean-continent configuration of the model

e Either in real system or in physical simulation models
e Supports necessary and sufficient conditions for causality.
e But: In climate science often infeasible or time-consuming!

Nobel prize in
physics 2021
for Klaus
Hasselmann
and Syukuro
Manabe



Two Types of Causality Studies

Schematic for Global
Atmospheric Model

‘ Horizontal Grid (Latitude-Longitude)

Vertical Grid (Height or Pressure)

1) Experimental Study: when interventions are possible.

e Either in real system or in physical simulation models
e Supports necessary and sufficient conditions for causality.
e But: In climate science often infeasible or time-consuming!

Nobel prize in
physics 2021
for Klaus
Hasselmann
and Syukuro
Manabe

2) Observational Study: purely from observations / model output.

e Only supports necessary conditions for causality
e \Weaker statements possible, but still powerful.
e Topic of this talk.
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Causal inference

Causal inference is a framework to
answer causal questions from
observational and/or experimental data.

Clark Glymour
(practical algorithms,
starting in 1980s)

Judea Pearl

Turing-Award 2011

(theoretical framework,
starting in 1980s)

Spirtes, Glymour, Scheines

! JD Angrist and GW Imbens
~ Nobel prize in economics

2021 (drawing conclusions from
unintended/natural experiments)
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ACTIVITY:

QUESTIONS:

g
>

EXAMPLES:

[ 3. COUNTERFACTUALS

Imagining, Retrospection, Understanding

What if 1 bad done ...2 Why?
(Was it X that caused Y? What if X had not
occurred? What if T had acted differently?)

Wias it the aspirin that stopped my headache?
Would Kennedy be alive if Oswald had not
killed him? What if T had not smoked for the
last 2 years?

ACTIVITY:

QUESTIONS:

EXAMPLES:

L

(2. INTERVENTION

Doing, Intervening

What if 1do ...2 How?
(What would Y be if I do X?
How can I make Y happen?)

If T take aspirin, will my headache be cured?
What if we ban cigarettes?

ACTIVITY:

QUESTIONS:

EXAMPLES:

N

(1. ASSOCIATION

Seeing, Observing

What if 1 see...?
(How are the variables related?
How would seeing X change my belief in Y?)

What does a symptom tell me about a disease?
What does a survey tell us about the
clection results?

J




Causal inference and causal discovery

Two types of tasks:

1. Utilize qualitative causal knowledge in form of
directed acyclic graphs including observed and
unobserved / latent variables

2. Learn causal graphs based on general assumptions
(causal discovery) — start here in the following!




Next: Very quick (and incomplete) intro to Causality 101

e For those new to causality.

e Everyone else: please take a 5 minute nap - or answer your email.



Concept 1: Graphs as Language for causal models

Express causal relationships as graph

e \Variables are nodes of graph.
e Edges indicate causal connection between nodes.
e Arrows indicate direction: cause — effect.

In this example:
e Three variables: X)Y, Z.
e XisacauseofY.
e Yisacauseof Z

You should have a question here...



Concept 1: Graphs as Language for causal models

Express causal relationships as graph

e \Variables are nodes of graph.
e Edges indicate causal connection between nodes.
e Arrows indicate direction: cause — effect.

In this example:
e Three variables: X)Y, Z.
e XisacauseofY.
e Yisacauseof Z

You should have a question here...

If X causes Y and Y causes Z,
isn’t X then also a cause of Z7?

Should there be an arrow also from X — Z?



Concept 2: Direct vs. indirect connections

Arrows indicate direct causes only.
In this plot:

e Xisadirect cause of Y.

e Yis adirect cause of Z.

e Xisonly an indirect cause of Z.

Goal of causal discovery: we want to identify only direct
connections. Eliminate all others.

Why eliminate indirect connections?
1) Sparsity, simplicity.

2) Only then can you understand effect of interventions!



Concept 3: Directness is relative property

One can always transform a direct connection into an
indirect one by including an intermediate cause!

Toy example:

Flooding

Monsoon month is direct cause of
flooding in this model.

Flooding

Monsoon month is only indirect cause
of flooding in this model.

Both models are correct!
Directness is only defined relative to variables included in model.




Concept 4: Causality is probabilistic relationship

Example:

Flooding

This graph implies:
1) Flooding is more likely in monsoon months, but not certain.
2) Flooding can also happen outside of monsoon months.

— Supplement graph with probabilities.
— Probabilistic graphical model (Bayesian network).

When learning these models from data:

Step 1: Identify graph structure from data — hard!
Step 2: Determine probabilities afterwards to estimate causal effects — easier!

Often: Care only about graph structure.



Concept 5: Hidden common causes (latent variables)
makes things challenging!

Ex.: Cloud cover is common cause here
of “low UV” and “high chance of rain”.

Amount of]

If we remove the common cause (Cloud cover) in model:
— Can no longer express a correct causal model with our standard arrow notation!

High

Amount of Chance of
Rain

Three alternatives to dealing with latent variables:

1) Ensure to include all latent variables in model (usually impossible in earth science).

2) Consider arrows only as a hypothesis while absence of arrows = absence of causality!

3) Use latent causal discovery algorithms, but they are slow and tend to be statistically fragile.



How can we remove connections based on observed data?

The following 4 questions are equivalent:
1) Can we eliminate edge between X and Z? \

2) Is there direct connection between X and Z? X Z

3) “Is X conditionally independent of Z given Y?”
4)IsP(X|Y,Z)=P(X]|Y)?

If yes for any of the above: eliminate edge between X and Z.

— Use conditional independence test: \
Many statistical tests available to test for conditional

independence.



A first simple algorithm for causal discovery - PC algorithm

Now we have:
Can use cond. independence test to detect and eliminate indirect connections (graph edges).

Basic algorithm for learning independence graph from data (PC algorithm):
1. Nodes of graph = observed variables.
2. Start with fully connected graph = assume that every variable is connected to every other
variable.
3. Eliminate as many edges as possible using conditional independence tests.
4. Establish arrow directions (using constraints from independence tests or temporal constraints).

This is an elimination procedure.

Whatever edges are left at end: potential causal connections (causal hypotheses).

Why only potential?

Because some of the connections might be due to latent variables (as discussed before) in this

simple, but still powerful algorithm.

PC algorithm - named after Peter Spirtes and Clark Glymour who invented this algorithm.




PCMCI causal discovery framework for time series

Challenge:
e Autocorrelation, time lags
e Contemporaneous links
e Latent variables




PCMCI causal discovery framework for time series

Challenge:
e Autocorrelation, time lags
e Contemporaneous links
e Latent variables
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Causal Discovery 101 - Summary

e Causal interpretation of reconstructed graphs requires caution:
o depends on assumption that causal relations reliably leave imprint in statistical
dependencies (Markov and Faithfulness assumption)
o Ssome methods assume no unobserved variables: links = potential cause-effect
relationships



Causal Discovery 101 - Summary

e Causal interpretation of reconstructed graphs requires caution:
o depends on assumption that causal relations reliably leave imprint in statistical
dependencies (Makov and Faithfulness assumption)
o Ssome methods assume no unobserved variables: links = potential cause-effect
relationships

e But solid tool - underutilized in the geosciences where often just correlation and
regression are used

e Proposed Use: Generate and test causal hypotheses



Causal Inference 101: Utilizing causal graphs

Task: Given causal graph and data, compute causal effect
of intervention in terms of observational distribution P(V)

P (Y|do(X=x))
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Causal Inference 101: Utilizing causal graphs

Task: Given causal graph and data, compute causal effect
of intervention in terms of observational distribution P(V)

P (Y|do(X=x))
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— can be estimated with (deep) ML
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Task: Given causal graph and data, compute causal effect
of intervention in terms of observational distribution P(V)
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Causal Inference 101: Utilizing causal graphs

Task: Given causal graph and data, compute causal effect Correlation
of intervention in terms of observational distribution P(V) regression
P(Y|d0(X:$)) Y =|brx X

Here P (V|do(X=z)) — / Plylz, ) P(2)d>

— can be estimated with (deep) ML | o

Y = /f(X =ux,7 = z)p(2)dz

*—o




Causal Inference 101: Utilizing causal graphs

Task: Given causal graph and data, compute causal effect Correlation
of intervention in terms of observational distribution P(V) regression
P(Y|dO(X:.I')) Y =|brx X

Here P (V|do(X=z)) — / Plylz, ) P(2)d>

— can be estimated with (deep) ML | :

Y = /f(X =ux,7 = z)p(2)dz

Causal
regression

Y =|ByxzX +ByzxZ

>.




Causal Inference 101: Utilizing causal graphs

Task: Given causal graph and data, compute causal effect
of intervention in terms of observational distribution P(V)

P (Y|do(X=x))
Here P (V]do(X=z)) — / Plylz, ) P(2)d>

— can be estimated with (deep) ML

Y = /f(X =ux,7 = z)p(2)dz

Optimal causal effect estimators
(Runge NeurlPS 2021)




Causal inference for earth science - special challenges

Challenges

Process:
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Autocorrelation

Time delays

Nonlinear dependencies
Chaotic state-dependence
Different time scales
Noise distributions

Data:

Computational / statistical:
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Variable extraction
Unobserved variables
Time subsampling
Time aggregation
Measurement errors
Selection bias
Discrete data

Dating uncertainties
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High dimensionality
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Causal inference for earth science - special challenges
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Application use cases W

e |earning causal graphs to understand mechanisms |
e Quantifying causal mechanisms: link strength and mediation anaLyS|s

e Causally robust forecasting (e.g. Kretschmer et al. 2017, DiCapua 2019)
e Detection and attribution of extreme events (e.g. Hannart et al. 2016)

Evaluating climate models and constraining climate change projections
Hybrid physical-ML modeling



Causal inference and dimension-reduction

e Motivation: High-dimensionality and redundancy of
spatio-temporal data
e lIdea: First extract ‘modes of variability’

a Complex system b Dimension reduction C Causal reconstruction
data given on a spatio-temporal grid yielding regional components including time lags

Exploratory

analysis
Causal gateway
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€ Importance of nodes d Causal interaction quantification
via aggregated node measures perturbation / information transfer

Runge et al. NatComm. (2015)
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Causal inference and dimension-reduction

Motivation: High-dimensionality and redundancy of
spatio-temporal data

e lIdea: First extract ‘modes of variability’
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Causal inference and dimension-reduction
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Causal physical model evaluation

wrong reasons

terms of causal relationships

Observed data causal network

Real world
processes

Motivation: Simple statistics can be right for the

Idea: Compare climate models and observations in

Model data causal networks
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Causal physical model evaluation
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Causal physical model evaluation

e Motivation: Simple statistics can be right for the

wrong reasons
e Idea: Compare climate models and observations in

terms of causal relationships
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Causal ML-hybrid modeling

Also see Al4Good talk by

Reichstein next week!

Several previous Al4Good talks by Tapio Schneider, Bjorn Stevens, Chris Bretherton,

Eyring and Gentine

Idea: Restrict input for neural nets to causal drivers (see Al4Good by Eyring and Gentine)

/Cloud-ResoIving Models (CRMs)

Coarse-gralnlng

Coarse-gramed

ML-based subarid scale parametrization (offline)

Different types of NNs

_.@E_..._x

\

state variables Coarse-grained
physics tendencies
Improved climate Improved Earth system
projections understanding
é ) Causal NN Physical constraints é N
................ Latent
e —@Q) : space
{ - de
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Resolved | Subgrid 4 ot Encoder r. l
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° 1 PDE discovery
Trained ML-algorithm 3 O
(data-driven parametrization)
\ ML-based parametrization online \ Improved trust & generalization J \ Lower-order model y




Application: effect of arctic temp on jet stream

Science question: What is the effect of arctic temperature on speed / latitude of jet stream, and vice versa?

Only two variables, but causal feedback loops.

/\ iti lati hi — Use time series framework discussed earlier:
POSIVE IRtOnstm add lagged variables to model and build model including those.
/\ negative relationship 15, 20 days 5, 20, 25 days
Arctic jet Arctic jet
temperature speed temperature latitude
5 days 5 days

e Dominant relationships: Positive for jet speed, negative for jet latitude.
e Both are thus positive (reinforcing) feedback loops.
e Get time lags from analysis, too.

Environmetrics, 2018.

Samarasinghe, McGraw, Barnes, Ebert-Uphoff, A study of links between the Arctic and the midlatitude jet stream using Granger and Pearl causality,




Application: Spatially-distributed systems (Approach 1)

a Complex system b Dimension reduction C Causal reconstruction Approach 1:
data given on a spatio-temporal grid yielding regional components including time lags Start with data on grid
SPArIoUs Nk Sue — dimensionality reduction
to common driver ey viiniggun,., Indirect path
Zja O R e — smaller number of nodes

s} g / N \ — build causal graph in
> w '
. \ reduced node space

Causal links o

Exploratory
analysis
Causal gateway
’_/ ""'., Shortest paths
,(-Z’ \ W "._ # stronges! pahs
“ Cau -‘;.'l.f'w” C
X & Z mediator ‘e ~
\ B $ 0909090909090 == e -y
X | 5t (out-)degree
< argest influence
e Importance of nodes d Causal interaction quantification
via aggregated node measures perturbation / information transfer

Runge, J., Petoukhov, V., Donges, J.F.,, Hlinka, J., Jajcay, N., Vejmelka, M., Hartman, D., Marwan, N., Palu$, M. and Kurths, J., 2015. Identifying causal
gateways and mediators in complex spatio-temporal systems. Nature communications, 6(1), pp.1-10.




Application: Spatially-distributed systems (Approach 2)

Approach 2: Use all nodes from original global grid
— Challenge: Grid spacing can create artifacts!

Goal: track information flow in the atmosphere. _, Need to map data to special grid (here: Fekete points)
/

Nodes: grid points (each with associated time series)

Output: Causal interactions between grid points

Input: Atmospheric field on global grid Information flow in the atmosphere /

Sample input: 500 mb
geopotential height

Source:
NCEP/NCAR Reanalysis,
1948-2011

Results for boreal winter
(Dec-Feb)

Algorithm: PC stable
(variation of PC algorithm)
with lagged variables

(a) 0-day-delay (b) 1-day-delay

Ebert-Uphoff and Deng, A New Type of Climate Network based on Probabilistic Graphical Models: Results of Boreal Winter versus Summer,
Geophysical Research Letters, vol. 39, L19701, 2012.




Application: Spatially-distributed systems (Approach 2)

Example of grid artifacts

Using equal area grid with 918 points Using Fekete grid with 800 points
— results distorted by uneven distance between — points equally spaced
neighboring points! — only small grid artifacts

(a) Travel < 1 day (b) Travel ~ 1 day

(a) Travel < 1 day (b) Travel ~ 1 day

Ebert-Uphoff and Deng. "Causal discovery from spatio-temporal data with applications to climate science." In 2014 13th International
Conference on Machine Learning and Applications, pp. 606-613. IEEE, 2014.




Application: Spatially-distributed system (Approach 3)

Causal discovery in Spectral Space
Goal: track interactions between processes occurring at different spatial scales

1) Causal discovery in grid space:

3. Graph of

1. Time series 2. Structure dependencies
at grid points learning between
locations

2) Causal discovery in spectral space using spherical harmonics (SH) for decomposition:

Approach 3: Start with data in global grid
— Transform into spectral space
— Causal discovery in spectral space
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Use spherical harmonics (SH) Nodes: real and imaginary
decomposition for functions on a sphere coefficients of SH decomposition

Disturbance, Journal of the Atmospheric Sciences, 77 (3): 925-941, 2020.

Samarasinghe, Deng, Ebert-Uphoff, A Causality-Based View of the Interaction between Synoptic- and Planetary-Scale Atmospheric




Determine “causal signatures” of climate model runs.

CESM Model
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Calculate “causal signature” for individual model output
Baker et al., [LINK]
initial conditions), then compare their “signature”. Geoscentific Model
First experiments: use only 15 variables, use global aver1 Development, 2016

Applications: effect of compression, error check, understanding of

differences between ensemble members or models.




Take-home message

e Causal inference: Framework to answer causal
questions from empirical data
e Two settings:
o Utilize qualitative causal knowledge (graphs)
o Learn causal graphs (then utilize them)
e (Causal reasoning requires assumptions about
underlying system and data
e (Causal inference well complements Al and machine
learning on complex datasets
e Primary goal of causal discovery is to generate
hypotheses (for further investigation)
e LOTS of opportunity for causality in earth science!
Software:
e Tigramite, pcalg, TETRAD, daggity, causalfusion,

causeme platform, ...
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A platform to benchmark causal discovery methods
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Data and methodological scope, includes:

Machine learning; Artificial intelligence; Statistics; Data mining
Computer vision; Econometrics Data science, broadly defined.

Environmental scope, includes:

Water cycle, atmospheric science (including air quality, climatology,
meteorology, atmospheric chemistry & physics, paleoclimatology)

Climate change (including carbon cycle, transportation, energy, and policy)
Sustainability and renewable energy (the interaction between human processes
and ecosystems, including resource management, transportation, land use,
agriculture and food)

Biosphere (including ecology, hydrology, oceanography, glaciology, soil science)
Societal impacts (including forecasting, mitigation, and adaptation, for
environmental extremes and hazards)

Environmental policy and economics

5 Reasons to submit to EDS:

U

Gain quality peer review feedback on your work from editors and reviewers who
have expertise in the use of data science in environmental disciplines.

Publish, if accepted, your work under open licensing to make it freely available
to read, distribute and re-use in a venue that also provides you with options for
making pre-prints, data and code openly available.

Reach a wider audience through impact statements published with articles,
conveying the significance of your work.

Align your conference or workshop with Environmental Data Science,

as a venue that can make peer-reviewed outputs open and discoverable.

Help us build a community of authors, reviewers and editors advocating for the

transformative potential of data science for a better understanding of the environment.

More details at O@envdatascience cambridge.org/eds O@envdatascience



Join the causal inference group at DLR / TU Berlin

Open postdoc positions —
www.climateinformaticslab.com

----- Earth




Join CIRA and AI2ES

Open position:
Data Visualization Researcher
(Research Associate Il)

Apply by Feb 7, 2022.
See posting at

https://www.ai2es.org/opportunities/hiring/

Connecting Models and Observations



https://www.ai2es.org/opportunities/hiring/

More examples of Al research topics for weather/climate applications - from Imme’s work

Cooperative Institute for Research in the
Atmosphere (CIRA)
https://www.cira.colostate.edu/

Connecting Models and Observations

Use Al to detect in satellite imagery:

Convection initiation (severe weather)
Cloud properties, vertical profiles (aviation),
Gravity waves (understand energy transfer),
Rapid intensification of tropical cyclones.

Use Al (image-to-image translation) to generate:
e  Synthetic radar imagery (severe weather)

e  Synthetic passive microwave imagery (tropical cyclones).

Use Al to emulate radiative transfer equations
— speed up numerical weather prediction models.

Funded by NOAA/NASA.

NSF Al Institute for Research on Trustworthy Al in
Weather, Climate, and Coastal Oceanography (AI2ES)
https://www.ai2es.org/

Make Al trustworthy for earth science:

e  Simplify Al methods to make them more robust and
interpretable;

e  Develop explainable Al (XAl) methods for
weather/climate/coastal application;

e  Work with risk communication scientists and
forecasters to identify Al and XAl needs for
operational weather forecasting settings.

Funded by National Science Foundation (NSF)


https://www.ai2es.org/
https://www.cira.colostate.edu/

Thank you! Questions?

Connecting Models and Observations




