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Machine learning for communications:

importance to industry
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Machine learning for communications
(ML4COMM) still faces the small data regime

Models are relatively small and
ML4COMM has yet to escape small

Data scarcity is an issue. Problem of
traditional cycle: high cost of
measurements when using high
frequencies and multiple antennas

data regime

small data regime

Deep learning

most others

Performance

1
Amount of data

For instance, reinforcement learning
(RL) agents applied to

communications typically have a
small action space dimension




Key alternative for speeding up MLACOMM:
use simulations to generate large datasets

LASSE

Virtual Reality in Real Time: FastNeRF
accelerates photorealistic 3D rendering via
Neural Radiance Fields (NeRF) to visualize
scenes at 200 frames per second
https://arxiv.org/abs/2103.10380v2

13™1TU ACADEMIC CONFERENCE

KALEIDOSCOPE

ONLINE

Connecting physical

. 250FPS 238.1FPS
and virtual worlds

200FPS 172.4FPS

6-10 December
150FPS

100FPS

SOFPS 15.0FPS
0.06FPS 0.18FPS 1.1FPS )

OFPS —_— e — —

. . . NeRF DeRF NSVF DONeRF ours 1k ours 512
https://www.itu.int/en/ITU-T/academia/kaleidoscope/2021/Pages/default.aspx cache  cache

We will run simulations much faster than real-time 8




Historical evolution of neural networks

applied to speech recognition

\
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/[Renals et al]\ [ s\lNeBgff]

HMM/MLP, 69 breakthrough:

outputs, 1 9304 outputs, 7
hidden layer, hidden layers,
QOOk paramete@ \15M parameters/

TI

/ MIT (TIMIT)
dataset was

released

= Algorithms [ Tspeech recognition 9




From (detailed) TIMIT to large (SWBD) datasets

48 Breakthrough:

50 o Switchboard-1 (SWBD-1) dataset
38.8
Word
oo 40 When speech
e 30 HMMs with deep o
(WER) 103 19.8 19.8 :‘(;nilolutlonal nets recognltlon
20 — > reached the large

< 9.9
10 Hidden Markov models (HMMs) “5\5-1 data regime
with Gaussian mixtures (GMMs) LSTM +tricks

0

1995 1997 1999 2000 2001 2002 2003 2005 2007 2009 2011 2013 2015 2017

TIMIT dataset has detailed time-aligned orthographic and phonetic transcriptions
In 1986, took 100 to 1000 hours of work to transcribe each hour of speech

Project cost over | million dollars
Five phoneticians agreed on 75% to 80% of cases

10



Simulating communication systems + Al + VR / AR

6G systems are expected to support applications such as augmented
reality, multisensory communications and high fidelity holograms. This
information will flow through the network. It is expected that 6G
systems will use ML/AIl to leverage such multimodal data and optimize
performance

This requires a simulation environment that is capable not only of
generating communication channels, but also the corresponding sensor
data, matched to the scene

ITU-ML5G-PS-006-RL: Communication networks and Artificial
intelligence immersed in Virtual or Augmented Reality (CAVIAR)

Generating MIMO Channels For 6G Virtual Worlds Using Ray-tracing Simulations https://arxiv.org/pdf/2106.05377.pdf



CAVIAR: get “measurements” on virtual worlds

;| MIMOchannel | Hi¢ A
Digital world generation % (Hta Pt)
o : Model
= Learr_nng |
P = algorithm

: -t
Feature extraction =
from sensors data =

a) Training stage

b) Test (channel estimation)

t

I
Feature extraction L1 A/ ML
Real world )—h e e
from sensors data model

12
Generating MIMO Channels For 6G Virtual Worlds Using Ray-tracing Simulations https://arxiv.org/pdf/2106.05377.pdf
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Array form factor decreases

when frequency increases
(mmWave in 5G / THz in 6G)

mmWave THz

Y

Wavelength A=c/f

A=5 mm when f=60 GHz
Space between
antenna elements = A/2

Y
Y
Y

lllustrative radiation patterns of an array:

2 antennas 36 antennas

One antenna

Given a phased antenna array, we choose a
“beamvector” to impose a radiation pattern

£ @ K



Beam selection in 5G mmWave

Align the beams of transmitter and receiver

Analog beamforming Analog combining

i 69 Codebook with
M, vectors w

: RF
S BEm
Y: Receiver (Rx)

Codebook with
M, vectors f

RF |
DAC

Transmitter (Tx)

Phase shifters . . . o
specified Iby --------- Y Wireless channel H C.J‘O_al. maXIrpllze
codebooks y(l,]) — |Wj Hfil

Brute force to find best: try all possible M, x M. pairs of indices

[1] Heath et al, An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems, 2016



ML-based beam selection in 5G mmWave:
often modeled as supervised learning

Tx codebook . Rxcodebook Typically posed
as a classification
problem. We will

assume RL

Index

Example with
two beamvectors
per codebook

N Sy, e, NN Pair or single index
Inputs from P 2w iy W NN & \ (1,1) 0
communication i NSRS y
systemand also [ SyehSe i XK - () 1

from sensors
such as GPS




RADIO STR/KE

Part |l — Radio Strike

A Reinforcement Learning Game for MIMO Beam Selection in Unreal
Engine 3-D Environments



Reinforcement learning with OpenAl Gym

i We adopt the popular OpenAl Gym API
https://gym.openai.com/

A *make(): Used to create environment.

sreset(): Setting the environment to default
starting stage.

*render(): It creates a popup window to
display Simulation of Agent interacting with
environment

*step(). Action taken tiy the agent. it returns
] _ = an observation. (4 valued nump¥ array,
Goal: Find a policy that maximizes the return <observations, reward, done, info> )

over a lifetime (episode, if not a continuing task)

https://www.slideshare.net/a4aleem/reinforcement-learning-using-openai-gym 18



import gym
env = gym.make('CartPole-v0')
env.reset()
for _inrange(1000):
env.render()
env.step(env.action_space.sample())

Using random actions:

After training the RL agent:

Similarly, we want to choose the beam

and maximize performance with
respect to throughput and packet loss

19




in downlink

Traffic for user 1 Base station !
) ' |

Problem: scheduling :

Queue 1 and beam-selection :
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Reinforcement learning for beam selection:
RadioStrike-noRT-v1

The RL agent is executed at a base station (BS) with an antenna array and serves single-antenna
users on downlink using an analog MIMO architecture: pedestrian, drone and car

State (or observation): position Environ.

and buffer status of each user,
previously scheduled users, etc.

Action: at each time slot the
agent action schedules one user
and chooses the beam index to
serve this user

The state is defined by

the participant, as well
as eventual “intrinsic” Reward: normalized throughput with a penalty for dropped packets

Return (in the end of the episode): sum of rewards

rewards

21



ITU-ML5G-PS-006:
research questions and strategies

Some questions:
When performing user scheduling and beam selection, does position information
help the scheduler?
Can we benefit from knowing the positions of scatterers?

From experience with 2020 Challenge:
Help participants with the (eventually steep) learning curve
Besides the main problem, discuss related simpler tasks and provide support

Keep evolving:
Build together increasingly difficult CAVIAR “games”
Create benchmarks for realistic applications of RL in 5G and 6G




Strategy 1: Provide guidance with the setup

Several specialized tools, besides the ones for reinforcement learning

@ python O PyTorch T & Keras

TensorFlow

Most used language Google’s, TF versions 1 and 2, with high level Keras API

Deployment frameworks: facilitate pruning the models and quantizing the weights for acceleration

Efficiency Toolkit & PyTorch Quantization #5 Intel, etc.
[+

Auxiliary tools for (shaIIow) machine learning, debugging, assessing models and running on cloud

.& Jupyter It may not be trivial to set up your development workflow




Strategy 2: Share simple baseline code

#load the trained agent and test it
trained _model = DQN.load("beam selection.dgn™)
env.enable rendering() #allow visualizing
obs = env.reset() #reset environment
for 1 in range(10):
action, _states = trained model.predict(obs)
obs, reward, dones, info = env.step(action)



#use DON

dgn_agent = DQN(policy="MlpPolicy",
batch _size=10,
gamma=0.9,
verbose=1,
exploration fraction=6.9,
learning rate=0.01,
buffer size=1560,
exploration final eps=0.02,
exploration initial eps=1.0,
learning starts=160,
env=env,
tensorboard log="./log tensorboard/",
seed=0)

#train the agent

dgn_agent.learn(total timesteps=total timesteps)

n|
i
n



Strategy 3: Postpone using ray-tracing and
adopt simple MIMO channel estimation

Positions Communication

Y

R
1 Datasets
/ \ Y Communication
Digital [/ Scene attimet \ | | Ray Tracing parameters
re;:resintatlll:in Static bbb - Data ik (MIMO channel,
of real wor : I power, etc)
- | |
] I |
P o [ [ B ! |
o LIDAR Data |
OpenStreetMap _i" Point Cloud | T 7
Mobile | | . .
o7 A lm» ! | for Communications
ﬂ. / \ / I | images from | | (ML4COMM) Engine
Positions ADblender Sémulated ; =
. CESIUM | A L|ocameras
FOR UNREAL I I
|
I
|
|
|
I

Physics englnel L :
__ r ("GPS-based") System
1
|
|

Future =0
- SUMO unrzas —
environment L I _
Actions
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Strategy 4: provide support to two beam
selection environments

MimoRL-simple-1-vO

RadioStrike-noRT-v1 (easier to start with) Both have the basic elements:
£ vygame window _ .

(PS-006 ITU Challenge)

s B Base station
B user Beams

180°|

©Q = N W &»& 0 O N

ITU-ML5G-PS-006-RL: challenge, learning environment and

framework for building future CAVIAR simulations

27



Concepts of tabular reinforcement learning

ﬁ OpenAl gym environment
MimoRL-simple-1-vO

Strategy to get a policy: Easier to visualize:
o find the “value” of a N grid-world example
state/action pair, its long- (reach a pink corner)
term return |

-]
17 Q-table
2
3 0l Q(s,a) values
4 100
Nu = 2 #users 513;_ 0 80 lﬂq
Nb = 64 #beam indices
M = 6 #grid 31;e , Multi-armed bandits (MAB) are
Na = 3 #allocation timeout

simpler RL in which the action POIicy: what to do.

1 = * _
num_actions=Nu*Nb =128 influences the reward but not

num_states=M" (2*Nu) *Nu” (Na-1) =5184 the “state” I\/Iaps states in actions

[1] Sutton’s & Barto’s book. Reinforcement learning: an introduction.




Policy versus Q-value in simpler 4 x 4 grid

Goal is to reach one of the pink corners

Q-values for

optimal policy

The reward is -1 The Q-value is the long-term expected
everywhere return, not the immediate reward

Policy can be based
on the Q(s,a) table.
Learn the table first.

[1] Sutton’s & Barto’s book. Reinforcement learning: an introduction (Example 4.1)
[2] https://github.com/ShangtongZhang/reinforcement-learning-an-introduction/blob/master/chapter04/grid_world.py



Q table: expected Online learning, no need for

long-term return output labels. Support to
delayed reward

Find the balance between

Table can - YA Then use a3
: explore and exploit

become too , neural

network [1] Environment:

* Probabilistic / deterministic
e Stationary / non-stationary
estimates *Full / partial state
(linear activation) observability

Need reward engineering

[1] Mnih et al, Playing Atari with Deep Reinforcement Learning, 2013 30
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Another advantage of a NN instead of a table:

the state space (input) can be continuous (real
numbers)




Another class of algorithms:
Policy Gradient

Example: an RL agent that allocates power
(as real numbers) in cell-free MIMO requires
a continuous action space

Policy gradient methods: the NN output is a policy, not Q-value estimates.
Supports stochastic policies.

State (input) and action spaces (output) can be continuous (real numbers)
Discrete action example Continuous action example

Input: © OO Softmax Activations
state o activation: for Gaussian
distribution means and

over actions § variances

31



Summary of RL Methods

Action
State .. 128
1

\o Q-values

7"® estimates

of actions

Actor-critic (e.g. A3C): uses 2 NNs, Critic estimates Q-values and Actor the policy

In all NN-based cases: # outputs neurons = # actions. PS-006 has a small # actions




How is the ITU-ML5G-PS-006-RL simulation
performed?

Base
station
serving a
drone

33




Simulation block diagram
UnreaUAhsWn——~'“”“"ﬂfﬂfﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂfﬂ’ ’

Szl Episodes
generator i

Rendering

Simulation
environment

—————————————————————————————————————————————————————————————

Agent output file RL agent RL agent

test training

(scheduled user and
codebook index)



Unreal/Airsim

Episodes

Waypoint
generator

Simulation

_ environment
Rendering

—————————————————————————————————————————————————————————————

Agent output file RL agent RL agent

test training

(scheduled user and
codebook index)



i
-2, ;
\ i

ITU-ML5G-PS-006-RL code and associated files =

S https://github.com/lasseufpa/ITU-Challenge-ML5G-PHY-RL

‘= README.md

Radio Strike

Details about the challenge and the datasets are available at http://ai5gchallenge.ufpa.br.
Registration link: https://challenge.aiforgood.itu.int/match/matchitem/39

Datasets are available at https://nextcloud.lasseufpa.org/s/WYZAMbSbdocs2DL

Radio Strike Installation

This instructions will guide you through the process of using Radio Strike.

@ Setting up the environment to run the baseline codes

The provided RL agent uses Stable-Baselines as its framework. Because of that, in our environment we need

Python 3.6 and Tensorflow 1.14. 36



Steps to prepare the environment and run the baseline

Radio_Strike

— baseline

— agent_output

—— episodes_ues

— results

—— caviar_episodes_generator

— way_points

— preliminary
L— runi

— test

— training

—— windows_runtime

— linux_runtime

—— episodes_datasets

preliminary

— runo

— runi

— test

— training

We used Stables-Baselines 2.10 for our RL agent, so we needed
Tensorflow 1.14 and Python 3.6

Run RL agent train/test

37



Data organization

The dataset is provided in .csv files, that are in the folder episodes (i.e epe.csv, epi.csv etc). Each episode has approximately 3 minutes
of duration, with information stored with a sampling interval of 10 ms. The csv is composed by the following columns:

timestamp obj posx posy posz orien.w orien_x
orien.y orien_z linear.acc x linear.acc.y linear_.acc_z linear_vel_x linear_vel_y

linear_vel z angular_acc x angular_.acc.y angular.acc z  angular_vel x angular_vel .y angular_vel z

There are three different types of objects: uav, simulation_car and simulation_pedestrian .Only the uav type has information in all
columns, while the others have only information regarding their position and orientation.

CSV text file corresponding to an episode:

timestamp obj pos_x pos_y pos_z orien_w orien_x orien_y orien_z linear_acc_x linear_acc_y
1,62508018033396E +018 uavl -0.20948558 0.24244854 -1.9929655 -0.0021526131  0.004117747 0.9999892 -6.1888495e-05 0.04079342 -0.07799979
1,62508018033396E +018 simulation_carl 47.956226 16.016552 8.409805 0.00095201726  0.00078579056  -0.7081485 0.7060625
1,62508018033396E +018 simulation_car2 -2.2606368 -1.942027 8.409806 0.001008632 0.0007415256  -0.70921654 0.7049897
1,62508018033396E +018 simulation_pedestrianl  2.6764462 34,1297 7.4372497 0.0 0.0 -0.7726407 0.6348436

38



Episode example (complete information
about the scene)

Sampling interval T, = 10 milliseconds
Average episode duration = 3 minutes

timestamp obj
1,62508018033396E+018 uavl
1,62508018033396E +018 simulation_carl
1,62508018033396E +018 simulation_car2
1,62508018033396E +018 simulation_pedestrianl
1,62508018033396E +018 simulation_pedestrian2
1,62508018033396E +018 simulation_pedestrian3
1,62508018033396E +018 simulation_pedestriand
1,62508018033396E +018 simulation_pedestrian5
1,62508018033396E+018 simulation_pedestrian6
1,62508018033396E +018 simulation_pedestrian7
1,62508018033396E +018 simulation_pedestrian8
1,62508018033396E +018 simulation_pedestrian9
1,62508018033396E+018 simulation_pedestrian10
1,62508018033396E +018 simulation_pedestrian1l
1,62508018033396E +018 simulation_pedestrian12
1,62508018033396E +018 simulation_pedestrian13

This information does not depend on the RL agent actions and can be pre-
computed. The buffer status can be used as input to the agent but need to be

pos_x
-0.20948558
47.956226
-2.2606368
2.6764462
2.8446472
35.294273
4.173308
34.344566
2.2895343
38.16299
38.262566
28.910654
38.476254
33.541344
30.552599
3.6040344

pos_y
0.24244854

16.016552
-1.942027
34.1297
28.789553
35.42358
35.695763
37.21747
35.48529
-16.524492
17.056343
-17.344934
20.479986
-17.368237
-17.409073
-16.202654

retrieved along the execution

pos_z
-1.9929655
8.409805
8.409806
7.4372497
7.4372497
7.4372497
7.43725
7.4372497
7.43725
7.4372497
7.4372497
7.4372497
7.4372497
7.4372497
7.43725
7.4372497

orien_w
-0.0021526131
0.00095201726
0.001008632
0.0

0.0

-0.0

0.0

-0.0

0.0

0.0

-0.0

0.0

-0.0

-0.0

0.0

-0.0

orien_x
0.004117747
0.00078579056
0.0007415256
-0.0

0.0

0.0

0.0

0.0

-0.0

0.0

0.0

-0.0

0.0

0.0

0.0

0.0

orien_y
0.9999892
-0.7081485
-0.70921654
-0.7726407
-0.66428643
0.9032605
-0.93007565
0.0003657082
-0.66687083
-0.7460329
0.6159631
-0.10489227
0.71488017
0.99640214
-0.78051025
0.94671106

orien_z

-6.1888495e-05 0.04079342

0.7060625
0.7049897
0.6348436
0.7474781
0.4290926
0.36736804
0.99999994
0.74517334
0.66590905
0.787775
0.9944836
0.69924694
0.08475071
0.62514293
0.32208395

linear_acc_y
-0.07799979

39



Input data for baseline RL agent

acc z,linear vel x, linear vel y, Jdinear vel 2 angular acc x,angular a(( _y.angular acc z, anqular vcl X, ar-qulal vel y,angular vel 2
0,uavl, 8.01 6 -8.6 99¢ ,8.0440399 942386435,1.0644681e-85 343265 ,-2.6114742e-0
.smulauon ’ 5 3 3 > vrevrvy

768, simulation car2,2.316 ?
1760, simulation pedestrianl, i 6
3766, simulation pedestrian2,13.¢
7‘)\;‘!"«700 simylation pedestriand 3 0.0,-0 g
60, simulation pedestriand, ] 7 (s 0, -6.99986%9
3760, simulation pedestrians,2 052,7.4372497, 0.0,0.142
0,simulation pedestriang,k22.41 1741,7.43724 ).0,0.9952
0,simulation pedestrian?, 37.495476,-14 887019,
pedestriang,38.70787
pedestriang, 23 48 7.43725,-0.6 99219,6
_pedestrianl,38.8212 0 )
¢, simulation pedestrianll,3s 4167
573766, simulation pedestriani2,s3
0,simulation pedestrianl3,
60, simulation pedestriani4,s
17771599 NWJ simulation
o,simulation pedestrianit,
3760, simulation pedestrianl?,?
60, simulation pedestrianis,2
573760, simulation pedestrianly, )
73760, simulation
0,simulation
0,simulation pedestrian22 4.2
¢, simulation pedestrian23, 4.1
768, simulation pedestrian24,21.316 «d
0,simulation pedestrian2s, i/ 4
3766, simulation pedestrianlé,-11 76697
9573760, simulation pedestrian2?,-12 € b
3760, simulation pedestrian2s,-12 7 ,-6.0 D, 6
3760, simulation pedestrian29,-11 82,-8.678 2497,0.0,-0.9,- 9 0
60, simulation pedestrian3a, 12 ? 3 3 i ¥ 6815,0.7 AR
3760, simulation pedestrian3l, 5l 24 912 J !, 06173,0. 18327498, . sovvvvvere
0,simulation pedestrian32,sl 9 7 Bovesresresre
3760, simulation pedestrianid3, sl 7.43 .

.nmulanonrpedestr an34,51.1615 4 7 7 37N
65,uavl,0.01 5 3 0 9 9 3 ,0.073425%, - 5, -0,041620012,1.0477216¢-4
916, simulation carl & 84874,

car2,2.336621 22.3813 ’ 0 ). 06DS Sivssesbniins
pedestriani,3 -
pedestrian2, 13.0

pedestrian3,? B ) 7.43 -8.0 g
pedestriand, 19.58067 9 3 0,-0.0,-0.9998059,0 6
pedestrians, 2 € «7.437 0.0,0.0,0.103285, 9 ’
16,simulation pedestriang, 22 44 ) 372497, 4 99531114 09672 40

simulation -14 u <z7<
simulation -7

Only data from user
(discard scatterers):
uavl, simulation_car2,
simulation_pedestrian4




Timeline

L)
July 01, 2021

Preliminary dataset
Baseline reinforcement
learning code

°
July 26, 2021

First part of the
training data

e
August 10, 2021

Second part of the
training data

e
mid-September 2021

Release of test episodes
Final submission
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