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Figure 7-1. Error Rate of Image Classification by Artificial

Intelligence and Humans, 2010-17
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That sounds bad.

| et's defend against It....
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We evaluated 13 defenses proposed at
(ICLR|ICML|NeurlPS) 20(18]19(20)

All were broken.
Adversarial accuracy of roughly 0%.

Tramer, Carlini, Brendel, Madry. "On Adaptive Attacks to Adversarial Example Defenses”
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Reviewer 3:

Another weakness of the paper Is that
defenses are broken by existing techniques.
Indeed, at the end of the analysis, most of the
defenses are broken either by using EOT
BPDA, or by tuning the parameters of existing
attacks such as PGD. Some detenses are
pbroken by using decision based attacks. All
this techniques already exist in the
litterature [1,2,3,4]; hence the technical part is
not novel (see also related work section).
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for example ... our attack

L1 = L(h(x), padv),
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Biclique Cryptanalysis of the Full AES

Andrey Bogdanov*, Dmitry Khovratovich, and Christian Rechberger*

K.U. Leuven, Belgium; Microsoft Research Redmond, USA; IENS Paris and Chaire France Telecom. France

Abstract. Since Rijndael was chosen as the Advanced Encryption Standard, improving upon
7-round attacks on the 128-bit key variant or upon 8-round attacks on the 192/256-bit key
variants has been one of the most difficult challenges in the cryptanalysis of block ciphers for
more than a decade. In this paper we present a novel technique of block cipher cryptanalysis
with bicliques, which leads to the following results:

The first key recovery attack on the full AES-128 with computational complexity 2*%%'.

—

. ~ . T ‘ . . * ‘ - 189,75
The first key recovery attack on the full AES-192 with computational complexity 2 .

The first key recovery attack on the full AES-256 with computational complexity 2°°%4.
Attacks with lower complexity on the reduced-round versions of AES not considered before,
including an attack on 8-round AES-128 with complexity 2% .

Preimage attacks on compression functions based on the full AES versions.
In contrast to most shortcut attacks on ALES variants, we do not need to assume related-keys.
Most of our attacks only need a very small part of the codebook and have small memory require-
ments, and are practically verified to a large extent. As our attacks are of high computational
complexity, they do not threaten the practical use of AES in any way.
Keywords: block ciphers, bicliques, ALLS, key recovery, preimage
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o=0.25
o=0.50
oc=1.00
undefended

>
O
(O
“—
-
O
O
(O
—
D
—
=
-
o
O




L> =100

AT OE= AT R T T = Fo>=— 1313 3=—>">




igina

®




| > distortion: 75




| » distortion: 75




Claim:
We are crypto pre-Shannon




Reason 3.



t's not |ust
adversarial shifts ...




Do ImageNet Classifiers Generalize to ImageNet”

Benjamin Recht” Rebecca Roelofs Ludwig Schmidt Vaishaal Shankar

UC Berkeley UC Berkeley UC Berkeley UC Berkeley

Abstract

We build new test sets for the CIFAR-10 and ImageNet datasets. Both benchmarks have been
the focus of intense research for almost a decade, raising the danger ol overfitting to excessively
re-used test sets. By closely following the original dataset creation processes, we test to what
extent current classification models generalize to new data. We evaluate a broad range of models
and find accuracy drops of 3% 5% on CIFAR-10 and 11% - 14% on ImageNet. However,
accuracy gains on the original test sets translate to larger gains on the new test sets. Our results
suggest that the accuracy drops are not caused by adaptivity, but by the models™ inability to
generalize to slightly “harder” images than those found in the original test sets.
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Simplified Distribution Shift Plot
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Simplified Distribution Shift Plot
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Conclusion



We've come a long way towaras
understanding adversarial roobustness.

We still have a long way to go.
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